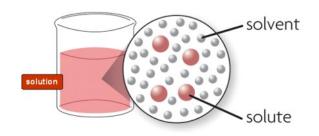
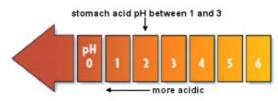
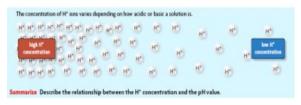
CORNELL NOTES

Directions: You must create a minimum of **5 questions** in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned sections (if completed) and turned in to your teacher at the end of the Unit for scoring.

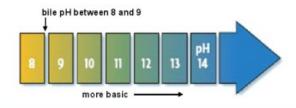

UNIT 1: INTRODUCING BIOLOGY Chapter 2: Chemistry of Life

I. Atoms, lons, and	Molecules (2.1)	•	
A. Living thin	gs consist of	of di	fferent elements
1. An	atom is the	<u>ba</u>	sic unit of
2. An		is <u>one</u> typ	e of atom
3. An	atom has a		_ and electrons
	a. The nucleus ha	s	and
Oxygen : Nucleus: \$ protons (+) \$ neutrons 4. A elements bor	b. Electrons are in the nucleus	energy le	outermost energy level: 6 electrons (-) inner energy level: 2 electrons (-) of atoms of different
	a. Water (H ₂ 0)		
	b. Carbon dioxide	(CO ₂)	
	c. Many other carb things.	on-based (compounds in living
В	form when ator	ns <u>gain or</u>	lose
1. An electro		nas gained	or lost one or more
	a. Positive ions		electron(s)
	b. Negative ions -		_ electron(s)
	ed ions	bonds for	m between oppositely

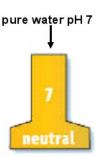

C. Atoms **share** pairs of electrons in _____


bonds

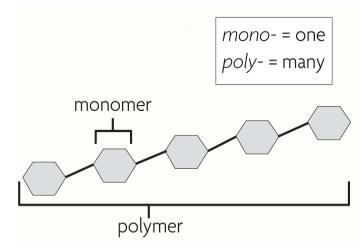
	ovalent bond forms when at electrons	oms a
	a. Multiple covalent bonds	
	b. Diatomic molecules	
2. A _ togeth	er by covalent bonds.	or more atoms held
II. Properties of Wat A. Life depen	ter ads on hydrogen bonds in _	
1. Wat	ter is a molec	ule
	a. Polar molecules have sli	ghtly charged regions
	b have charged regions	_ molecules <u>do not</u>
	c. Hydrogen bonds form between slightly positive hydrogen atoms and slightly negative atoms.	Н
-	lrogen bonds are responsible rties of water.	for three important
	a.	
	b.	
	C.	
B. Many com	pounds	_ in water
1. A so anothe	olution is formed when one suer	ubstance dissolves in
	a. A is a	homogeneous mixture
	b. <u>dissolv</u>	ve other <u>substances</u>
	c. disso	lve in a solvent
2. " Lik	e dissolves like"	
	a. Polar solvents dissolve po	olar solutes

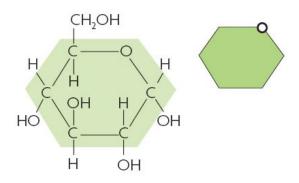



- b. Nonpolar solvents dissolve nonpolar solutes
- c. Polar substances and nonpolar substances generally remain _____
- C. Some compounds form _____ and ____
 - 1. An **acid** <u>releases a</u> <u>ion</u> when it dissolves in water
 - a. High _____ concentration
 - b. **pH** _____ than **7**



- 2. A base removes hydrogen ions from a solution
 - a. low ____ concentration
 - b. **pH** _____ than **7**


3. A neutral solution has a pH of _____


H+ H+ H+ H+ H+	H+ H+ H+	H+ H+	H*	H+	H*	H*	H ⁺
H+ H	H* H* H*	H* H*	H*	H*		н*	low H ⁺ concentration
HT UT UT H UT	H* H*	Н					

- III. Carbon-Based Molecules (2.3)
 - A. Carbon atoms have **unique** _____ properties
 - 1. **Carbon** forms _____ with up to four other atoms, including other carbon atoms.
 - 2. **Carbon-based molecules** have <u>three</u> general types of structures
 - a. Straight chain
 - b. Branched chain
 - c. Ring

- B. Many carbon based molecules are made of many small subunits bonded together
 - 1. _____ are the individual subunits
 - 2. _____ are made of many monomers

- B. ____ main types of carbon-based molecules are found in living things.
 - 1. _____ are made of carbon, hydrogen, and oxygen

Glucose $(C_6H_{12}O_6)$ can be ring shaped and is often shown as a simplified hexagon.

a. Carbohydrates include sugars and starches

b. _____ are simple sugars

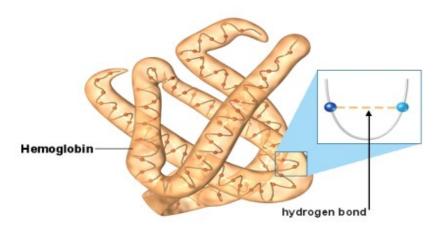
c. **Polysaccharides** include _____, and ____

d. Carbohydrates can be broken down to provide for cells

e. Some carbohydrates are part of cell structure

2. _____ are nonpolar molecules that include fats, oils, and cholesterol

a. Many contain carbon chains called fatty acids


b. Fats and oils contain _____

bonded to ______.

c. Lipids have several different fund	etions			
1). Broken down as a source of				
2). Make up				
3). Used to make hormones				
d. Fats and oils have different types	s of fatty acids			
1) fatt	y acids			
2)	fatty acids			
e. Phospholipids make up all	membranes			
Saturated fatty acid O CH2 CH2 CH2 CH2 CH2 CH2 CH2	Saturated fats contain fatty acids in which all carbon–carbon bonds			
	are single bonds.			
Unsaturated fatty acid O CH CH CH CH CH2 CH2 CH2 CH2 CH3	Unsaturated fats have fatty acids with at least one carbon–carbon double bond.			
1). Polar phosphate "	"			
2). Nonpolar fatty acid "	"			
Phospholipid PO ₄	***			
head tails				
3. Proteins are polymers of	monomers			
a different amino acids an proteins in organisms	re used to build			
b. Proteins differ in the	and			
of amino acids.				


1). Amino acids interact to give a protein its
--

2). Incorrect amino acids change a proteins structure and function

4	_ are polymers of
monomers called nucleotides	

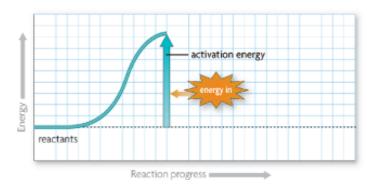
a. _____ are made of sugar, phosphate group, and a nitrogen base.

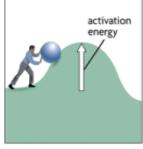
b. <u>stores</u> genetic information

c. RNA <u>builds</u>

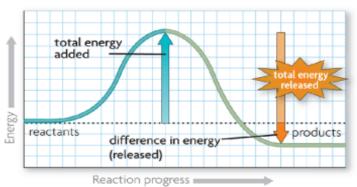
IV. Chemical Reactions (2.4)

A. Bonds break and form during chemical reactions.

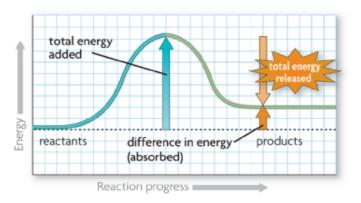

1. _____ are changed during a chemical reaction


2. _____ are made by a chemical reactions.

- B. **Bond energy** is the amount of energy that _____ a bond
 - 1. _____ is added To break bonds
 - 2. Energy is _____ when bonds form
- C. A reaction is at _____ when reactants and products form at the same rate.


$$CO_2 + H_2O \longrightarrow H_2CO_3$$

- D. Chemical reactions release or absorb energy
 - 1. **Activation energy** is the <u>amount of energy</u> that needs to be ______ to <u>start a chemical reaction</u>.

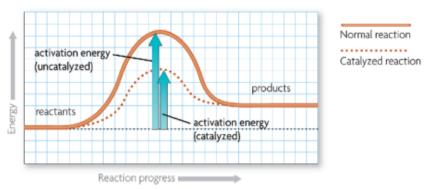

- 2. **Exothermic** reactions _____ more energy than they absorb.
 - a. **Reactants** have ______ bond energy than products
 - b. Excess energy is released by the _____

3. _____ reactions **absorb** more energy than they release.

a. Reactants have	bond
energy than products	

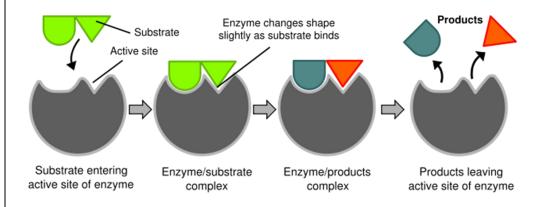
a. **Energy** is ______ by the reaction to make up the difference.

V. **Enzymes** (2.5)

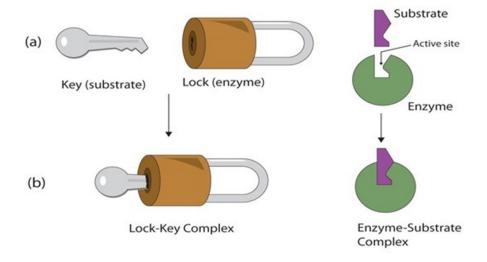

A. A _____ lowers activation energy

Catalysts are substances that _____

chemical reactions


a. <u>Decrease</u> _____ energy

b. Increase reaction _____



- B. Enzymes allow chemical reactions to occur under tightly controlled conditions.
 - 1. Enzymes are catalysts in _____
 - a. Enzymes are needed for almost all **processes**
 - b. Most **enzymes** are _____
- C. Disruptions in _____ can prevent enzymes from functioning.

	1. Enzymes function best in a sr	mall range of conditions
	Changes in can break hydrogen bonds.	and
	3. An enzyme's function	depends on its
D. Ar bind to the	n enzyme's <u>structure</u> allows only enzyme	certain reactants to
	1. Substrates ()
	2. Active Site (of enzyme)

E. The _______ **model** helps illustrate how enzymes function

