LAB: Conservation of Momentum CONCEPTUAL PHYSICS: UNIT 3

Directions: Go to the website http://phet.colorado.edu/en/simulation/collision-lab Make sure the 1-d box is checked. Click on "More Data" to expand the data table.

Part 1: Scenario #1:

100% Elastic collision between balls of equal mass

1. Make a hypothesis about initial and final momentums before playing with the sim.

2. Complete the following data tables for each ball before and after each trial. Perform 2 trials with 2 different sets of balls of equal masses.

Trial 1 Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 1 After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 2 Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 2 After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Part 1: Scenario #2:

100% Elastic collision between balls of unequal mass

1. Make a hypothesis about initial and final momentums before playing with the sim.

2. Complete the following data tables for each ball before and after each trial. Perform 2 trials with 2 different sets of balls of **unequal** masses.

Trial 1 Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 1 After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 2 Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Trial 2 After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

3. What is the relationship between the initial and final total momentums in Scenario 1? In Scenario 2?

4. Describe the motion of the balls before and after the collision in Scenario 1. Describe the motion of the balls before and after the collision in Scenario 2.

<u>Part 2</u>

Create 3 more distinct scenarios in 1-d including one totally *inelastic* collision (0% elasticity). For each scenario, list the elasticity percentage, fill out the data tables, and make a hypothesis whether or not each will follow conservation of momentum. Collect some data and prove or disprove your hypothesis.

Scenario #1

Elasticity %:

Hypothesis:

Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Hypothesis accepted or rejected? EXPLAIN

<u>Scenario #2</u> Elasticity %: Hypothesis:

Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

<u>Scenario #3</u> Elasticity %: Hypothesis:

Before Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

After Sim

Ball	Mass (kg)	Velocity (m/s)	Momentum (kg*m/s)
1			
2			
Total			

Hypothesis accepted or rejected? EXPLAIN

Summary

In a minimum of 3 sentences, describe the main ideas learned in this activity regarding initial and final total momentum in these collisions.