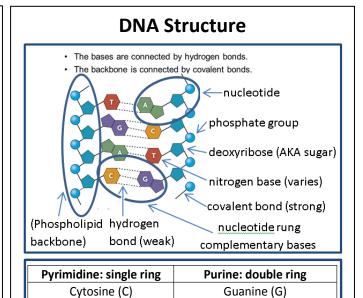
Genavieve Koenigshofer – Unit 4 Honors Bio Study Guide


| DNA History        |                                                                                                                                               |                                                                                           |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| People             | Significance                                                                                                                                  | Research                                                                                  |  |  |  |
| Griffith           | Transformin                                                                                                                                   | Dead lethal S bacteria, combined with harmless live R bacteria, killed mice               |  |  |  |
|                    | g principle                                                                                                                                   | • so a transforming material had to pass to R bacteria, making it deadly                  |  |  |  |
| Avery              | DNA is                                                                                                                                        | Used enzymes to test what is passed to offspring                                          |  |  |  |
|                    | genetic                                                                                                                                       | When enzymes broke down proteins or RNA, transformation still occurred                    |  |  |  |
|                    | material                                                                                                                                      | When they broke down DNA, it stopped; so DNA must be transforming                         |  |  |  |
| Hershey & Chase    | Confirm                                                                                                                                       | • Studied bacteriophages: its proteins have mostly sulfur, DNA phosphorus                 |  |  |  |
|                    | DNA is                                                                                                                                        | <ul> <li>When infected with radioactive sulfur (affecting proteins), no change</li> </ul> |  |  |  |
|                    | genetic                                                                                                                                       | With radioactive phosphorus, radioactivity found in bacteria                              |  |  |  |
| -                  | material                                                                                                                                      |                                                                                           |  |  |  |
| Chargaff           | A=T, G=C                                                                                                                                      | Chargaff's rules: equal amounts of adenine & thymine; guanine & cytosine                  |  |  |  |
| Franklin & Wilkins | double helix                                                                                                                                  | Used x-ray crystallography to suggest DNA's double helical shape                          |  |  |  |
| Watson & Crick     | 3D DNA                                                                                                                                        | Built on others' research to discover DNA structure                                       |  |  |  |
|                    | model                                                                                                                                         | • DNA is genetic material: from Griffith, Avery, Hershey & Chase                          |  |  |  |
|                    |                                                                                                                                               | <ul> <li>DNA is double helix: from Franklin &amp; Wilkins</li> </ul>                      |  |  |  |
|                    | <ul> <li>DNA is made up of two complementary (opposites that fit together) strands of A and T<br/>and G: explains Chargaff's rules</li> </ul> |                                                                                           |  |  |  |

## **DNA Replication:** creates exact copies of genetic info

- 1. helicase unzips double helix by breaking weak hydrogen bonds
- 2. free-floating nucleotides pair up to form complementary strands
- 3. two identical molecules of DNA formed, one old strand and one new strand
- 4. DNA polymerases find and correct errors

| Replication is carried out by  | enzymes                        |  |
|--------------------------------|--------------------------------|--|
| Helicase                       | unzips double helix            |  |
| Polymerase                     | finds and corrects errors      |  |
| Importance of hydrogen bonds   | Hydrogen bonds are easily      |  |
|                                | broken, allowing unzipping     |  |
| Source of new nucleotides      | Free-floating in nucleus       |  |
| Result of replication          | One old strand, one new strand |  |
| How can replication occur in a | It begins at many different    |  |
| few hours?                     | points throughout the strand   |  |

| Cell Cycle              |                                                                                                            |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Interphase              |                                                                                                            |  |  |
| Gap 1 (G <sub>1</sub> ) | Normal functions                                                                                           |  |  |
|                         | cell size increases, more organelles                                                                       |  |  |
| Synthesis (S)           | Cell copies nuclear DNA, resulting in 2 complete sets                                                      |  |  |
| Gap 2 (G <sub>2</sub> ) | Normal functions, more growth                                                                              |  |  |
|                         | Checkpoint: must be adequate size, undamaged DNA                                                           |  |  |
| Mitosis (M)             |                                                                                                            |  |  |
| Mitosis                 | Division of cell nucleus and contents                                                                      |  |  |
| Cytokinesis             | Divides cytoplasm, makes 2 identical daughter cells                                                        |  |  |
| Rates of cell           | Vary widely                                                                                                |  |  |
| division                | Usually faster in prokaryotes                                                                              |  |  |
| Why do cells divide?    | Volume increases faster than surface area, the area of cell membrane that supports cell, so more SA needed |  |  |



Chargaff's Rule
amount of adenine = amount of thymine
amount of guanine = amount of cytosine

Adenine (A)

Thymine (T)

| What cells undergo | Somatic cells                       |
|--------------------|-------------------------------------|
| mitosis?           |                                     |
| What takes place   | DNA replication (interphase)        |
| before mitosis?    |                                     |
| What does mitosis  | 2 diploid genetically identical     |
| produce?           | daughter cells                      |
| What regulates the | External (physical) factors that    |
| cell cycle?        | trigger internal (chemical) factors |
| What is apoptosis? | Programmed cell death               |

|             |                                                                                                                                                         |                | _ |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|
| Interphase  | Before mitosis: Prepares cell to divide by replicating DNA                                                                                              | lus            |   |
|             |                                                                                                                                                         | r<br>pe        |   |
| Prophase    | <ul> <li>DNA condenses into chromosomes</li> <li>Nuclear envelope breaks down</li> <li>Centrioles move to poles</li> <li>Spindle fibers form</li> </ul> |                |   |
| Metaphase   | Chromosomes line up in middle                                                                                                                           | Spindle fibers |   |
| Anaphase    | Chromatids separate to opposite sides of cell                                                                                                           |                |   |
| Telophase   | <ul> <li>Nuclear membrane begins forming</li> <li>Chromosomes begin to uncoil</li> <li>Spindle fibers fall apart</li> </ul>                             |                |   |
| Cytokinesis | Separate stage during telophase: cytoplasm divides, make 2 identical daughter cells w/ full sets of DNA                                                 |                |   |
|             |                                                                                                                                                         |                | L |

| Mitosis    |                                      |  |  |
|------------|--------------------------------------|--|--|
| Cancer     | Uncontrolled cell division           |  |  |
| Tumor      | Disorganized clump of cells          |  |  |
| Benign     | Harmless: cancer cells remain        |  |  |
|            | clustered together, doesn't spread   |  |  |
| Malignant  | Harmful: Cells break away            |  |  |
|            | (metastasize) from tumor and spread  |  |  |
|            | through body                         |  |  |
| How does   | Normal cells suffer damage to genes  |  |  |
| it form?   | that make proteins for cell division |  |  |
|            |                                      |  |  |
| Causes     | Carcinogens, inherited, radiation    |  |  |
| Carcinogen | Substance known to cause cancer      |  |  |
| Treatment  | Radiation, chemotherapy              |  |  |

| Sexual reproduction        | Asexual reproduction   |
|----------------------------|------------------------|
| Joining of two specialized | Offspring comes from   |
| cells (egg & sperm)        | single parent          |
| Offspring genetically      | Offspring genetically  |
| unique                     | identical              |
| Eg: meiosis                | Eg: binary fission (in |
|                            | prokaryotes)           |
| In changing                | In non-changing        |
| environments, genetic      | environments: well-    |
| diversity increases        | suited to environment  |
| survival chances           | and efficient          |

| Meiosis                 | Mitosis                  |
|-------------------------|--------------------------|
| 2 cell divisions (PMAT) | 1 cell division          |
| Produces 4 haploid      | Produces 2 diploid cells |
| cells                   |                          |
| Offspring genetically   | Genetically identical    |
| unique                  |                          |
| Sexual reproduction     | Asexual                  |

|               | Chromosomes                                                      |  |  |
|---------------|------------------------------------------------------------------|--|--|
| Somatic cells | Diploid body cells (most common), in tissues & organs            |  |  |
| Germ cells    | Cells in reproductive organisms, develop into gametes in meiosis |  |  |
| Gamete (sex   | Haploid cells (egg and sperm) that pass DNA to offspring in      |  |  |
| cells)        | chromosomes                                                      |  |  |
| Autosome      | First 22 homologous pairs of homologous chromosomes              |  |  |
| Chromosome    | One long continuous thread of DNA; 46 in humans                  |  |  |
| Sex           | Last pair of chromosomes controlling development of sexual       |  |  |
| chromosomes   | characteristics                                                  |  |  |
| Homologous    | Pair of chromosomes, one from father and one from mother         |  |  |
| chromosomes   |                                                                  |  |  |
| Chromatid     | Identical half of a chromosome                                   |  |  |
| Centromere    | Holds together 2 sister chromatids in middle                     |  |  |
| Telomere      | Found at ends of DNA molecules so they don't come apart          |  |  |
| Chromatin     | Loosely condensed, unwound DNA                                   |  |  |
| Diploid       | Two copies of each chromosome, in somatic                        |  |  |
| Haploid       | One copy of each chromosome, in gametes                          |  |  |
| Histones      | Protein that DNA wraps around                                    |  |  |
| Gene          | Code to program production of structural & functional proteins   |  |  |
|               | 22,000 genes store code in nucleotides                           |  |  |

| Levels of Organization |
|------------------------|
| Cells                  |
| Tissues                |
| Organs                 |
| Organ Systems          |

| Stem Cells             |                                |  |  |
|------------------------|--------------------------------|--|--|
| Stem cell              | Undifferentiated cell that can |  |  |
|                        | become any other cell          |  |  |
| Types                  | Fertilized egg                 |  |  |
|                        | Embryonic stem cell            |  |  |
|                        | Adult stem cell                |  |  |
| importance             | Treat leukemia, lymphoma       |  |  |
|                        | may repair damaged organs      |  |  |
|                        | may cure diseases (diabetes)   |  |  |
| Cell                   | Unspecialized cells develop    |  |  |
| different-             | into their mature forms: cells |  |  |
| iation                 | have full set of DNA, but use  |  |  |
|                        | certain genes to become        |  |  |
| specific to a function |                                |  |  |