Study Guide: Fall Final Exam

HONORS BIOLOGY: UNITS 1-5

Directions: The list below identifies topics, terms, and concepts that will be addressed on your Fall Final Exam. This list should help you focus your review. This is <u>not</u> a homework assignment you will turn into me.

Chemical Bonds

- 3 types of bonds (Examples of each. Comparative strengths of bonds)
- Importance of electron configuration (rule of 8)

Enzymes

- Importance to living things
- Effects of enzymes on chemical reactions
- Lock and key model (Enzyme, Substrate, Active site)
- Importance of 3-demensional shape ("Structure determines function")

Organic Compounds

- Unique qualities of carbon
- 4 categories of carbon-based (organic) compounds
 - Monomers and polymers of each
 - o Importance to living things
- Dehydration synthesis (examples)
- Hydrolysis (examples)
- Metabolism, catabolism, anabolism
- Compare and contrast saturated and unsaturated fats

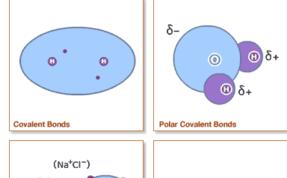
Homeostasis

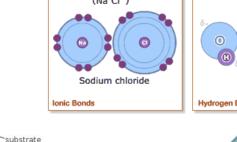
- Definition
- Examples of homeostasis
- Negative feedback systems (and positive feedback)

рН

pH scale (acid-neutral-base)

Scientific Method

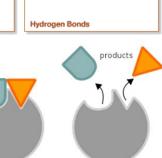

- Steps of Scientific Method
- Controlled experiment (importance)
- Variables
 - Dependent variables (observed and measured)
 - Independent variables (manipulated)
 - Controlled variables (constants)

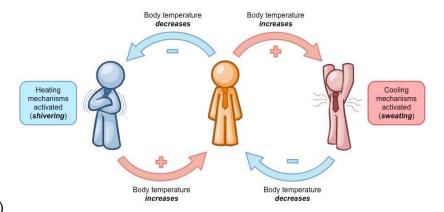

Data Analysis

- Interpreting graphs and data tables
- Interpreting experimental data and forming conclusions

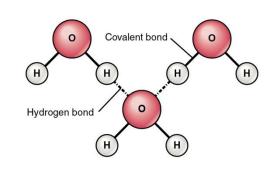
Properties of Water

- Polarity of water molecule
- Adhesion
- Cohesion




active site

enzyme + substrate


enzyme / substrate complex

enzyme + products

enzyme / products complex

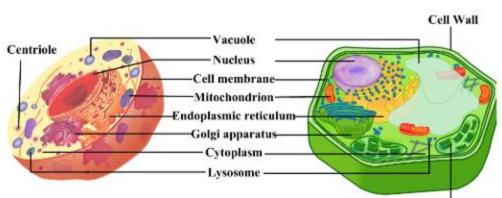
Chemistry

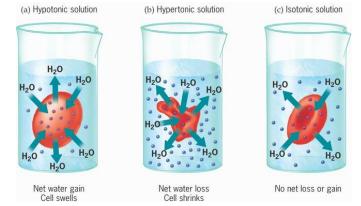
- lons
- Atoms
- Elements
- Chemical compound
- Chemical reactions (Reactants and products)
- Solutions (Solute/solvent)
- Inorganic/organic compounds

Cell Structures and Organelles

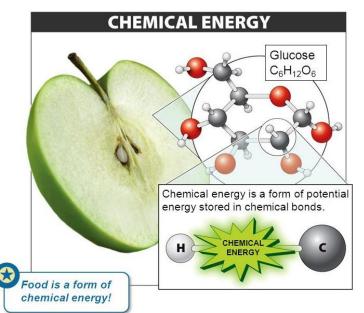
- Identify cell structures/organelles and their function
 - Nucleus
 - o Nucleolus
 - Nuclear membrane
 - Cytoplasm
 - o Cell membrane
 - o Ribosomes
 - o Rough ER
 - Smooth ER
 - Golgi apparatus
 - Lysosomes
 - Mitochondria
 - Chloroplasts
 - Vacuoles
 - Cytoskeleton
 - DNA/chromatin
 - o Centrosomes/centrioles
 - Cell wall
- Differences between plant and animal cells
- Pathway for production of a protein and releasing them from cell (organelles involved)

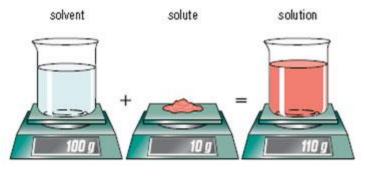
Cell Transport


- Active transport (endocytosis, exocytosis)
- Passive transport (Diffusion and Osmosis, Facilitated diffusion)
- Transport proteins
- Concentration gradient (Isotonic, Hypertonic, Hypotonic)
- Dynamic equilibrium


Cell Theory

- Prokaryotes vs. Eukaryotes
- 3 parts of theory
- Endosymbiotic theory
- Importance of different organic compounds in the cell


Energy

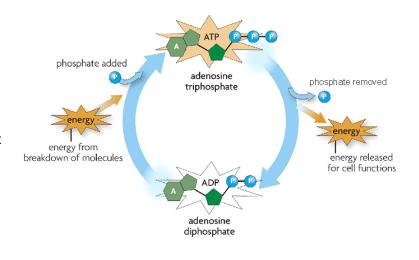

- What is energy?
- Forms of energy (Kinetic energy, Potential energy)
- Where is energy stored in molecules?
- Law of Conservation of Energy (examples of conversions of energy)

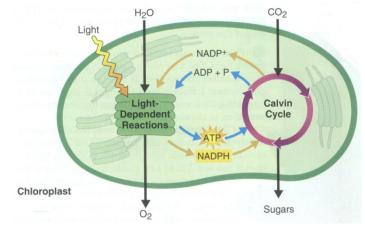
Chloroplast

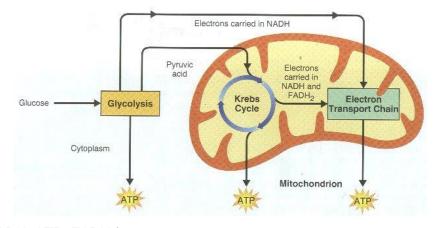
Chemical Energy and ATP

- What is ATP used for?
- Where is energy stored in ATP?
- Most important energy sources (types of organic compounds)
- Structure of ATP (3 parts)
- Describe cycle: ATP → ADP → ATP (What provides the energy add phosphate back onto ADP)
- Autotrophs/producers, Heterotrophs/consumers
- Chemosynthesis

Photosynthesis


- Definition of photosynthesis (equation for photosynthesis)
- Chloroplasts
 - Colors absorbed by chlorophyll and reflected
 - o Grana
 - o Thylakoids
 - o Stroma
 - Importance of membranes (What reactions take place here?)
- Stages of Photosynthesis
 - Light Dependent Reaction
 - What powers LD reaction
 - Photosystem I and II
 - Where does it occur
 - ATP Synthase (what does it produce and what powers it?)
 - Reactants and Products
 - Light Independent Reaction
 - What powers LI reaction (name energy molecules and where they were produced?)
 - Where does it occur?
 - Reactants and products
- Functions of photosynthesis (Base of food chain, Regulation of Earth's atmosphere)


Leaf structure and function


- Guard cells and stoma (function and location)
- Palisade and Spongy Mesophyll (function and location)

Cellular Respiration

- Mitochondria
- Overall equation (reactants and products) and total 36 ATP produced
- Glycolysis (reactants and products)
 - o Anaerobic
 - Net ATP production (2 ATP)
 - Location of glycolysis
- Krebs cycle
 - Location
 - Starting molecule C₆H₁₂O₆ first transformed into pyruvate in glycolysis
 - \circ Pyruvate \rightarrow CO₂
 - Energy molecules produced (NADH, ATP, FADH₂)
 - 2 molecules ATP produced

- Electron Transport Chain
 - Source of energy
 - Location it takes place
 - o 32 molecules of ATP produced

Fermentation

- Allows glycolysis to continue (recycle NAD⁺ to NADH)
- Purpose of fermentation (when does it occur and why)
- 2 types (Lactic Acid and alcoholic)

Energy and Exercise

- Quick energy (source and amount)
- Long term energy (source and amount)

Identifying DNA as the Genetic Material

- Discoveries and significance
 - Griffith , Avery, Hershey and Chase (DNA genetic material)
 - \circ Chargaff (A =T, C = \acute{G})
 - Rosalind Franklin and Maurice Wilkins (DNA helix)
 - Watson and Crick (how did they use prior work to develop model of DNA?)

Chromosome Free nucleotides DNA polymerase Leading strand Helicase Lagging Strand Adenine Thymine Cytosine

DNA polymerase

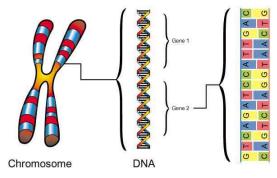
glycolysis

Structure of DNA

- Monomers (ATCG) and structure
- Chargaff's Rule
- DNA molecule (backbone and rungs, bonding on backbone and rungs)

Guanine

DNA Replication


- Definition (purpose)
- Role of enzymes
- Importance of hydrogen bonds
- Result of replication (one old strand and one new strand)

Chromosomes

- Somatic cells
- Germ cells
- Autosomes (22 pairs)
- Sex chromosomes (1 pair, XX or XY)
- Homologous chromosomes
- Composition of chromosome (sister **chromatids**)
- What are genes
 - o How do they store genetic code?
 - o What do genes do with code?
 - o How many genes do we have?
- Diploid and haploid

Cell Cycle

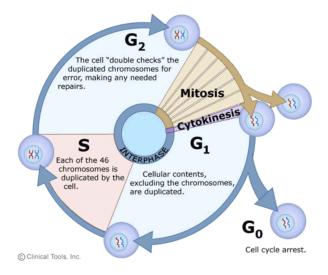
- Stages of Cell Cycle
- Rates of cell division vary

Fermentation is an anaerobic process

cellular

respiration

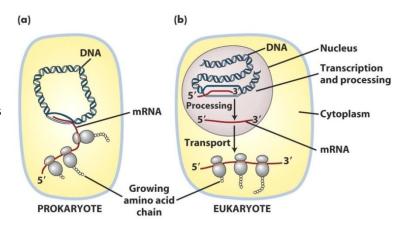
fermentation


Original (template) DNA strand

that allows glycolysis to continue.

without.

 O_{2}



Limits of cell size (surface area to volume ratio)

Transcription

- Central dogma of molecular biology (Francis Crick)
 - o Replication (DNA → DNA)
 - o Transcription (DNA \rightarrow RNA)
 - Translation (RNA → Proteins)
- Prokaryotic cells
 - Replication, transcription, translation in cytoplasm
- Eukaryotic cells
 - o Replication and transcription in nucleus
 - o Translation in cytoplasm
- <u>Differences</u> between DNA and RNA
- Transcription produces 3 kinds of RNA (mRNA, rRNA, tRNA)
- Process of transcription
- Complimentary bases in RNA (A=U, C=G)

