

## IV. Transcription (8.4)

- A. RNA carries DNA's instruction
  - 1. Francis Crick defined the **central dogma of molecular biology**



- a. Replication copies DNA
- b. <u>Transcription</u> converts **DNA** message into intermediate molecule, called **RNA**
- c. <u>Translation</u> interprets an **RNA** message into string of amino acids, called polypeptide (protein)
- 2. In  $\underline{\text{prokaryotic cells}}$  processes take place in  $\underline{\text{cytoplasm}}$ 
  - Replication, transcription and translation occurs in cytoplasm of prokaryotes (no nucleus)
  - b. **Translation** begins while the mRNA is still being synthesized (transcription).



- 3. In eukaryotic cells processes are separated
  - a. Replication and Transcription in nucleus
  - b. Translation occurs in  $\underline{cytoplasm}$



- 4. **RNA** acts as **messenger** between nucleus and protein synthesis in cytoplasm
- 5. RNA differs from DNA in three significant ways
  - a. Sugar in RNA is ribose not deoxyribose
  - b. RNA has the base **uracil** in place of thymine
  - c. RNA is single stranded not double



- B. Transcription makes three types of RNA
  - Transcription copies sequence of DNA (one **gene**) and is catalyzed by RNA polymerases
    - a. DNA begins to unwind at specific site (gene)



| b. Using one strand of DNA, complementary                                   |  |
|-----------------------------------------------------------------------------|--|
| strand of <b>RNA</b> is produced c. RNA strand detaches and DNA reconnects  |  |
| o. N. V. Guaria detaones and Driv (1666) incots                             |  |
|                                                                             |  |
|                                                                             |  |
| ***************************************                                     |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
| Transcription produces 3 kinds of RNA     a. Messenger RNA (mRNA)- code for |  |
| translation                                                                 |  |
| b. <b>Ribosomal RNA (rRNA)</b> - forms part of ribosome                     |  |
| c. Transfer RNA (tRNA)- brings amino acids                                  |  |
| from the cytoplasm to a ribosome to help make growing protein               |  |
| Fibosome Amino acid                                                         |  |
| Uracil Carlo                                                                |  |
| Oracii Oracii                                                               |  |
|                                                                             |  |
| Messenger RNA Ribosomal RNA Transfer RNA                                    |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
| 3. The transcription process is similar to replication                      |  |
| a. Both occur in <b>nucleus</b>                                             |  |
| b. Both involve unwinding of DNA                                            |  |
| c. Both involve complementary base pairing                                  |  |
|                                                                             |  |
| Nucleus —                                                                   |  |
| TAUGUU GAAATTII TII TII TII TII TII TII TII TII                             |  |
| mfiNA                                                                       |  |
|                                                                             |  |

- V. Translation (8.5)
  - A. Amino acids are coded by mRNA base sequences
    - 1. Translation **converts mRNA** messages into **polypeptides**
    - 2. A **codon** is a sequence of **three nucleotides** that codes for an **amino acid**.



- a. RNA could code 64 different combinations
- b. Plenty to cover the **20 amino acids** used to build proteins in human body and most other organisms



- c. Many amino acids coded by more than one codon
- d. Also special codons
  - 1). Start codon- signals start of translation
  - 2). **Stop codon** signals end of amino acid chain



3. This **code is universal**- same in almost all organisms



- a. Suggests common ancestor
- b. Means scientist can insert gene from one organism into another to make functional protein

- B. Amino acids are linked to become a protein
  - 1. Two important "tools" needed to translate a codon into an amino acid
    - a. Ribosome- site of protein synthesis



- b. **tRNA** carries free-floating **amino acids** from cytoplasm to **ribosome** 
  - 1). tRNA attaches to specific amino acid
  - 2). Has "3-letter" **anticodon** that recognizes



| 2. Translation occurs in cytoplasm of cell                                                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| a. mRNA binds to ribosome                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>b. Ribosome pulls mRNA strand through one codon at a time</li> </ul>                                                                                                                                                                                                                                                                                      |  |
| Phenylalanine SRNA Lysine  V A C A A G A A G A A G A A A G A A A A A                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
| mRNA Start codon                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
| c. Exposed codon attracts complementary tRNA                                                                                                                                                                                                                                                                                                                       |  |
| bearing an <b>amino acid</b>                                                                                                                                                                                                                                                                                                                                       |  |
| Phonylalamine ISNA anticodon  Ribosome U A G A A G A A G A A G A A G A A G A A G A A G A A G A A G A A G A A G A A G A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A G A A A A A A A A A A A A A A A A A A A A |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
| mRNA Suar Coori                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
| d. <b>Amino acids bond together</b> and tRNA molecule                                                                                                                                                                                                                                                                                                              |  |
| leaves to find another amino acid                                                                                                                                                                                                                                                                                                                                  |  |
| Lysine tRNA                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |
| mRNA Translation direction                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                    |  |

| e. Ribosome moves down mRNA attaching more amino acids until reaches stop codon.  Protein molecule growing polypeptide chain polypeptide chain stop codon stop codon                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VI. Gene Expression and Regulation (8.6)  A. Your cells can control when gene is "turned on or off"  B. Different in prokaryotic and eukaryotic cells  C. Because cells are specialized in |  |
| multicellular organisms, only certain genes are expressed in each type of cell.  VII. Mutations (8.7)                                                                                      |  |
| A. Some mutations affect a <b>single gene</b> ,                                                                                                                                            |  |
| while others affect an entire chromosome  1. Mutation- a change in an organism's                                                                                                           |  |
| DNA                                                                                                                                                                                        |  |
| Mutations that affect a single gene usually happen during replication                                                                                                                      |  |
| 3. Mutations that affect                                                                                                                                                                   |  |
| group of genes or<br>chromosome happen<br>during meiosis                                                                                                                                   |  |

## **B. Gene Mutations**

1. **Point mutation**- one nucleotide is substituted for another



Result of simple point mutation



2. **Frameshift mutation**- involves insertion or deletion of a nucleotide in DNA sequence

Met Stop



- 3. Chromosomal mutations
  - a. **Gene duplication**-exchange of DNA segments through crossing over during meiosis
  - b. **Gene translocation** results from the exchange of DNA segments between nonhomologous chromosomes



- C. Mutations may or may not affect phenotype
  - 1. Impact on phenotype
    - a. Chromosomal mutations affect many genes and have big affect on organism



- b. Some gene mutations **change** phenotype.
  - 1. A mutation may cause a premature **stop codon.**
  - 2. A mutation may change **protein shape** or the **active site**
  - 3. A mutation may change gene regulation



- c. Some gene mutations  $\operatorname{\textbf{do}}$   $\operatorname{\textbf{not}}$  affect phenotype
  - 1. A mutation may be **silent**
  - 2. A mutation may occur in a **noncoding region**
  - 3. A mutation may not affect protein folding or



| 2. Mutations in <b>body ce</b>                    | lls do not affect offspring.                                                                     |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 3. Mutations in sex cells beneficial to offspring | 4. Natural selection often removes mutant alleles from a population when they are less adaptive. |  |
| D. Mutations can be cau                           | sed by several factors                                                                           |  |

- 1. **Replication errors** can cause mutations
- 2. **Mutagens**, such as UV ray and chemicals, can cause mutations
- 3. Some cancer drugs use mutagenic properties to kill cancer cells.