| Name | Date | Period | |---|-----------------------|---------------------| | Unit 5 Test | | 5 | | Directions : Answer the following questions using y completed on protein synthesis. | our notes, textboo | k, and labs we have | | 1. <u>Describe</u> and <u>draw</u> a diagram of the processes b molecules are involved, sequence of events, and w | | | | Replication: | | | | | | | | | | | | Transcription: | | | | | | | | | | | | Translation: | | | | | | | | | | | | | | | | Genes contain instructions for producing | | · | | 3. Cancer is a disorder in which some cells have lo | st the ability to cor | ntrol what? | 4. **Mutations** that affect a single gene normally occur during ______. 5. **Mutations** that affect <u>multiple genes</u> normally occur during ______. | 6. How might a mutation <u>affect</u> the resulting protein produced? | |---| | 7. What is a codon and what does it do? | | 8. What is an anticodon and what does it do? | | 9. How many codons would it take to code for <u>5 amino acids</u> ? | | 10. How many nitrogen bases does it take to code for <u>5 amino acids</u> ? | | 11. Why is it possible for an amino acid to be specified by more than one kind of codon? | | 12. What are the three types of RNA, where are they found and _ do they do? | | 13. What is the monomer of a protein ? | | 14. What is the monomer of a nucleic acid? | | 15. What are the similarities and differences of DNA and RNA? | |---| | Similarities: | | | | | | Differences: | | | | | | 16. If one side of a DNA molecule contains the following sequence of nucleotides, GCATTCGCA , the complementary sequence on the other side would be: | | | | 17. What would the mRNA molecule look like that is transcribed from the following DNA sequence? GCATTCGCA | | | | 18. How do replication, transcription, and translation differ in prokaryotes and eukaryotes ? | | | | | | | | 19. Lactose Intolerance, also known as lactase persistence, is caused by? | | | | | | 20. What is the <u>variable</u> portion of a nucleotide ? | | 21. Even though there are only <u>20 amino acids</u> thousands of different types of proteins can be made in the human body. How is this possible? | | | | 22. Why is it possible that a mutation may <u>not</u> affect the phenotype of an individual? | |--| | 23. What is the difference between a germ cell and a somatic cell ? (Where are they found and how are they made? | | 24. What type of organic molecule is lactose ? | | 25. What type of organic molecule is lactase ? | | 26. What was the control in the Lactose Intolerance lab? | | 27. Which molecule was the substrate in the <u>Lactose Intolerance lab</u> ? | | 28. Write a "word" equation for the breakdown of lactose. (<i>Include all reactants and products</i> .) | | 29. Why is lactose tolerance also called lactase persistence ? |