Study Guide: Unit 5 Test

HONORS BIOLOGY: PROTEIN SYNTHESIS

Directions: The list below identifies topics, terms, and concepts that will be addressed on your Unit 5Test. This list should help you focus your review. This is <u>not</u> a homework assignment you will turn into me.

Transcription

- Central dogma of molecular biology (Francis Crick)
 - Replication (DNA → DNA)
 - o Transcription (DNA → RNA)
 - Translation (RNA → Proteins)
- Prokaryotic cells
 - o Replication, transcription, translation in cytoplasm
- Eukaryotic cells
 - o Replication and transcription in nucleus
 - Translation in cytoplasm
- <u>Differences</u> between DNA and RNA
 - RNA single stranded (DNA double)
 - RNA sugar ribose (DNA sugar deoxyribose)
 - o RNA uracil in place of thymine in DNA
- Transcription produces 3 kinds of RNA
 - Messenger RNA (mRNA)
 - Transfer RNA (tRNA)
 - o Ribosomal RNA (rRNA)
- Process of transcription
 - o Function of enzymes involved
 - Unwinding of DNA
 - Complimentary bases in RNA (A=U, C=G)

Translation (Protein Synthesis)

- RNA making Proteins (polypeptides)
- Amino acid monomer, Protein Polymer
- Codon (3-letter code on RNA)
 - o 64 combinations
 - Only 20 amino acids
 - Many AA coded by more than one codon
 - Special codons
 - Start codon
 - Stop codon
 - Universal code
 - Suggests common ancestor
- Two important "tools" needed to translate a codon into an amino acid
 - Ribosome (site of protein synthesis)
 - Made of rRNA
 - o tRNA
 - Carries free-floating amino acids from cytoplasm to ribosome
 - attaches to specific amino acid
 - Has "3-letter" anticodon
- Occurs in cytoplasm
 - o mRNA binds to ribosome
 - Reads one codon at a time

- Anticodon complimentary to codon
- o Amino acids bond to each other

Gene Expression

- cells can control when gene is "turned on or off"
- Different in prokaryotic and eukaryotic cells
- Cell specialization
 - only certain genes are expressed in each type of cell

Mutations

- any change in an organism's DNA
- in single gene usually happen during replication
- group of genes or chromosome happen during meiosis
- Types of mutations
 - Point mutation
 - Frameshift
 - Chromosomal
 - Duplication
 - Translocation
- Mutation may or may not affect phenotype
 - Chromosomal usually big affect
 - Gene mutations may change phenotype
 - Premature stop condon
 - Change 3-D shape of protein
 - Change in gene regulation
 - Mutation may be in "silent" region of DNA
 - May not affect protein folding
- Mutation in body cells cannot be passed on
- Mutations in sex cells either harmful or beneficial
- Natural selection removes mutant alleles
- Mutations caused by several factors
 - Replication errors
 - Mutagens

Original sequence

main components of the human genome

Point mutation

Insertion change reading frame (amino acid to stop codon)

Meiosis compared to mitosis

