onit I										
Organic Com	npound	Мо	nomer		Polymer		Function			
Carbs (sugars and		Monosaccharide:		de:	Polysaccharide: cellulose,		Main energy source			
starches)		Gluo	cose	e amylose/starch, glyc		СС	ogen			
Lipids F		Fatt	tty acids +		Fats, oils, waxes		Store chemical energy in living things			
		glyc	glycerol				Make up cell membranes			
Proteins		Ami	mino acids (20)		Proteins		Structural, functional			
Nucleic acid	S	Nuc	leotide		DNA, RNA			Controls he	redity (programs proteins)	
Compound	Definiti	on	Examples			1	Cark	on: building	block of life	
organic	Has car	rbon Carbs, lipids, r		ds, p	proteins, nucleic mak		es up organic compounds			
	atom	acids				has 4 unpaired electrons in outer end		ectrons in outer energy lvl		
inorganic	No carb	on	Water, hy	droo	rochloride, nitrogen, can		covalently bond w/ up to 4 other			
	atom		carbon di	oxid	kide & monoxide atoms (inc		ns (including	carbon)		
Saturated Fa	at			Un	saturated Fat	1	can	can form long chain, branch chain, ring		
Single carbo	n-carbon	bond	ds	At	least one carbon-	1				
_				car	carbon double bond		Poly	saccharide	Function	
Maximum number of hydrogen		Les	ss hydrogen atoms	drogen atoms cellulose Makes up cell w		Makes up cell walls				
atoms (each bonded to a carbon)						Star	ch/amylose	Store glucose in plants		
Solid at room temp			Liq	uid at room temp glycog		ogen	Stores energy in			
In animals			In			branched in liver and				
Less healthy			Mo	ore healthy				muscle for quick energy		

Unit 1

Word	Definition
metabolism	All chemical processes involved in living state of cells and organisms,
	building and breaking materials to sustain life
catabolism Destructive metabolism: breakdown, releases energy	
anabolism	Constructive metabolism: synthesis, stores energy
Dehydration synthesis	(anabolism) water removed from original molecule, molecules combine
	(H20 on products right): hydrate first
hydrolysis	(catabolism) water added, molecules separate (H2O on reactant left):
	hydrate first (how digestion works)

Unit 2

Scientific Method					
1. observation: qualitative or quantitative	Independent variable: manipulated (x-axis)				
2. hypothesis: possible answer to question	Dependent variable: observed & measured (y-axis)				
3. experiment: test hypothesis	Controlled variable: kept the same				
4. analyze: results and draw conclusions	all these variables must be constant, so we know the				
	cause of the change is the independent variable				

Term	Definition	Notes		
atom Smallest basic unit of matter		Has nucleus (protons +, neutrons 0) and electrons (-) in energy levels outside nucleus		
element One type of atom		Living things made of elements		
compound Made of diff elements bonded		Eg water		
lon atom that gained/lost electrons		Lost=+, gain=-, ionic bonds between opp charged ions		
molecule	2+ atoms held by covalent bonds			

Genavieve Koenigshofer – Honors Bio Fall Final Study Guide

	Solutions	
solution	formed when one substance dissolves in	
	another	
Solvents	Dissolve other substances [dis-solve-nt]	
Solutes	Dissolve in solvents [solutes salute solvents]	

pH scale				
Acid 0-7				
Neutral	7			
Base	7-14			

Bonds

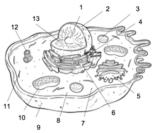
Bond type	How formed	Strength	Importance	Example		
Covalent Atoms share pair of electrons		strongest	In molecules, eg carbon	CO2		
Ionic Between opp charged ions medium Common: atoms give NaCl (salt, sodium						
	and gain electrons chloride)					
hydrogen Between slight + H, - atoms weak In water H2O						
octet rule: atoms have 8 electrons in outer energy lvl; if no, form bonds to fill in (electron configuration)						

Homeostasis

HomeostasisMaintenance of constant internal conditions to survive in diverse environm imbalances affect cell function	
Positive feedback As more hormones are produced, more are needed	
Negative feedback If level of hormones drops too low, more are produced	
Examples Sweating to cool down, shivering to keep warm	

Enzymes: protein catalysts in living things

Catalyst	substance that speeds up chemical reactions		
	 lower/decrease activation energy 		
	increase reaction rate		
Importance	Makes chemical reactions happen quickly enough to support organisms		
	 allow chemical reactions to occur under tightly controlled conditions 		
	 homeostatic disruptions can prevent functioning 		
Substrate	reactant		
Active site	Region where substrate and enzyme bond		
Lock-and-key model	illustrates enzyme function		
Importance of 3D shape	structure determines function		


Properties of Water

(Polarity)	(High specific heat)	Cohesion	Adhesion			
Slightly charged regions at	Heats up slowly	attraction	attraction between different			
ends		between	substances			
		molecules of				
		same substance				
So water forms hydrogen	Takes more energy	Because of H	Stronger than cohesion (capillary			
bonds: responsible for	to heat 1g 1C	bonds (coworkers)	action)			
these properties:						

Chemical Reactions

Chemical reaction Bonds break and reform			Exothermic	Endothermic
Reactants	eactants Changed (left side)		Release (more) energy	Absorb energy
Products Created (right)			(than absorbed)	
Bond energy Energy # that breaks a bond			Reactants have higher bond	Lower bond energy
Equilibrium Reactants and products			energy than products	
	form at same rate		Excess energy released	Energy absorbed to
Activation energy	Energy # needed to absorb			make up difference
	to start chemical reaction			

Cell Organelles

- 1. nucleolus: makes ribosomes
- 2. nucleus: stores and protects DNA
- 3. **Iysosome:** break down viruses and bacteria and old cell parts (animals only): "suicide sacs" (vesicles with digestive enzymes)
- 4. smooth endoplasmic reticulum: makes lipids
- 5. Golgi apparatus: "packages" proteins, sorts and delivers, tags them where to go: vesicles come off of Golgi, "post office"
- 6. rough endoplasmic reticulum: makes lipids and proteins (studded w/ ribosomes)
- 7. cytoplasm: fills space in cell, helping keep its shape
- 8. ribosome: makes proteins
- 9. cell membrane: protects cell, keeps in organelles, lets only some molecules in and out (made of phospholipids, still in plant cell but in wall)

Pathway for Protein Production					
Nucleus	Command				
Rough ER (ribosome)	Production				
Golgi apparatus	Packaging				
Vesicles (microtubules)	Transportation				
Cell membrane	excretion				

- 10. mitochondrion: cell's powerhouse, converts sugar and oxygen into energy (processes sugars)
- 11. microtubules: assist cytoskeleton, transport organelles, assist cell division (cilia & flagella); made up of tubulin proteins
- 12. centrosome (centrioles): makes microtubules (animals only)
- 13. chromatin: DNA, contains genetic code of cell
- cell wall: protects, supports, shapes cell (made of cellulose) (plants only)
- chloroplasts: photosynthesis, chlorophyll makes plants green (plants only)
- central vacuole: stores water and nutrients, break down waste, keeps plant's shape (plants only)
- nuclear membrane: layer around nucleus that protects it, pierced with pores allowing large molecules in and out of nucleus
- cytoskeleton: supports cell structure, made of microtubules
- plastid: group of organelles that do the same thing
- animal cells are rounded and plant cells are rectangular

Cell Membrane		
selectively /	lets in some things	
semipermeable		
fluid mosaic	made up of	
model	phospholipids, carbs,	
	proteins, cholesterol	
transport proteins	form channels through	
	membrane to allow	
	specific big molecules in	

	nsport (uses no energy, moves with on gradient)	Active transport (uses energy, travels from low-high): transport proteins squeeze molecule through	
Diffusion	Fluid moves high to low	Endocytosis Membrane engulfs cell	
	Osmosis: diffusion of water		Phagocytosis: cell eating
Facilitated	Large molecules move high to low	Exocytosis	Membrane of vesicle combines with
diffusion	through transport proteins		membrane and releases insides

concentration gradient: high to low concentration of substance

Isotonic	Normal size	Water flows in and out at equal rate (dyn equil)	
Hypertonic	Cell shrinks	More solute outside, less water outside, more water inside,	
		water flows out	
Hypotonic	Cell grows	Less solute and more water outside, less water inside, water	
		flows in	
Dynamic equilibrium: molecules continue to move but balance each other out (water floats in and out of cell at			
equal rates; molecules always continue to move around at high speeds so it spreads)			

Cell Theory

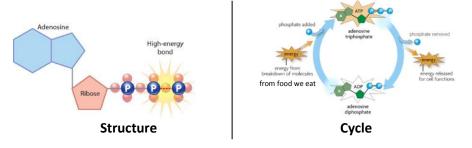
Robert Hooke (1665): used compound microscope to look at cork cells, gave name "cells"

all organisms are made of cells all existing cells are produced by other living cells the cell is the most basic unit of life

prokaryotesno nucleus or membrane bound organelleseukaryotesnucleus and membrane bound organelles

	Endosymbiotic Theory	
Definition	organelles (eg mitochondria, chloroplasts)	
	once free-living prokaryotes	
How	Prokaryote engulfed another prokaryote	
occurred	with a different function, beneficial	
	symbiotic relationship formed so evolved	
	together	
vidence	Similar to bacteria: own ribosomes and	
	DNA (genome), same size, split	
	independently	

Function	Organelles Involved
Cell energy	Carbohydrates
Cell transport	transport proteins,
	microtubules
Genetic material	DNA
Enzymes	Lysosomes (filled with
	digestive enzymes)

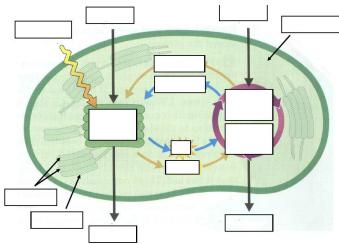

Unit 3

energy: allows objects to do work

property of objects which can be transferred to other objects or converted into different forms

Energy is stored in the bonds of	Energy is stored in the bonds of molecules: energy released to break bonds, energy added to form bonds	
Law of Conservation of Energy	Law of Conservation of Energy energy can't be created or destroyed, only change into different forms	
Kinetic energy	Energy of motion	
Potential energy	Stored energy	
Chemical potential en.	Energy stored in chemicals	
Gravitational potential en.	iravitational potential en. Height energy, potential energy if dropped	

ATP: adenosine triphosphate


What is ATP used for?	Carrying chemical energy that cells can use	Autotroph (producer)	make own source of chemical energy
Where is energy stored in ATP?	In 3 rd phosphate group's bonds	Heterotroph (consumer)	gets energy from other organisms
Most important energy sources	Carbs, lipids (proteins less likely to be broken down because storehouse of amino acids)	Chemosynthesis	Method of producing sugar using chemical energy (not sunlight) in hydrothermal vents of deep oceans
Structure	Adenosine, ribose, 3 phosphate groups		

Leaf Structure Structure Function Location Guard cell Open and close stoma Epidermis, around stoma Btwn guard cells in epidermis Stoma Let gases enter and exit Palisade mesophyll Food production (photosynthesis) Top middle layer Spongy mesophyll Gas exchange Middle layer

Photosynthesis: light energy to chemical potential energy (sugars) 6CO2+6H2O → C6H12O6+6O2

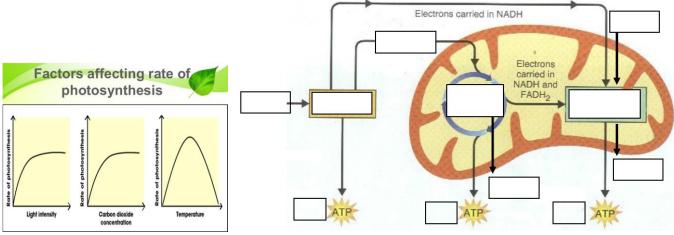
Chloroplasts		Functions
Absorb red and blue wavelengths, so reflect green	Base of food chain	makes food for themselves and
Thylakoid: coin-shaped, membrane-enclosed compartments		other organisms
Grana: thylakoid stacks	Regulates Earth's	removes CO2
Membrane: contains chlorophyll, hosts light-dep reaction	atmosphere	
Stroma: fluid surround grana, hosts light-ind reaction		·

Stage	1. electron transport chain	2. Calvin cycle
Reaction	Light-dependent	Light-independent
Powered by	sunlight	ATP and NADPH
Where occurs	thylakoid membrane	stroma
Reactants and Products	H2O → O2	CO2 → C6H12O6
	Photosystem II absorbs sun and breaks up H2O	Energy from ETC + CO2 makes glucose
	Photosystem I provides extra energy	Energy molecules used up, now ADP, NADP+
	H+ ions move through ATP synthase to make ATP	Recharged at ETC
		ADP+Pi=ATP, NADP+ + H+ = NADPH
	Recharges ATP and NADPH	

Cellular Respiration: break down sugars to make ATP; chemical potential food en. to ATP chemical potential en C6H12O6+6O2 \rightarrow 6CO2+6H2O

	1. glycolysis ("glucose breaking")	2. Krebs Cycle	3. electron transport chain
Stage			
Reactants & Products	Glucose → pyruvate (pyruvic acid)	Pyruvate → CO2	O2 → H2O (aerobic)
Location	cytoplasm	In mitochondria (interior space)	In mitochondria membrane
Net ATP	2 ATP (makes 4 but uses 2)	2 ATP	32 ATP
	Anaerobic (no oxygen needed)	Pyruvate bonds broken for energy	Uses enzymes
	C6 molecule broken into 2 C3 pyruvate molecules	Recharges: ATP (ADP+P), NADH (NAD+ + H), FADH2 (FAD+H)	Oxygen picks up electrons and hydrogen, bonds to water
	Recharges ADP to ATP, NAD+ to NADH	CO2 released as byproduct	Uses up to ADP, NAD+, FAD
			Electrons pump H+ into ATP synthase

Mirror image of photosynthesis


0 1	,	
Photosynthesis	Cellular Respiration]
in chloroplast	In mitochondria	N
Reactants of photosynthesis ar	e products of respiration	In
6CO2+6H2O → C6H12O6+6O2	C6H12O6+6O2 → 6CO2+6H2O	A
ETC, Cycle	Cycle, ETC	In
Takes in (sun) energy	Releases energy	
Occurs in plants (some bacteria/protists)	Occurs in all organisms]

What is Cellular Respiration?
In mitochondria
Aerobic process (needs oxygen)
In plant and animal cells
Makes 36 ATP total

Fermentation
Used to keep making ATP when no oxygen is available
Anaerobic
Does NOT make ATP
Recycles NADH to NAD+
Lactic acid fermentation (in muscles)
Alcoholic fermentation (in anaerobic bacteria, yeast)

energy sources during intense exercise

Stored ATP	A few seconds
Lactic acid fermentation	About 90 seconds
Cellular respiration –	15-20 min
glycogen in muscles	
Cellular respiration – fats, etc.	Continuous supply

Lab

Question	How do different light levels affect photosynthesis over time?
Independent var	time in light
Dependent var	number of floating disks
Control	covered beaker, made sure any changes did not result from anything other than light
Relationship	As time increased, more disks floated to the top.
Detergent was added to	help the water stick to the leaf disks and encourage photosynthesis
Sodium bicarbonate	carbon dioxide, a necessary reactant of photosynthesis
(baking soda, NaHCO3)	
was added to	
Explanation	When photosynthesis occurred, glucose and oxygen were produced. Oxygen is buoyant
	and allowed the light disks to float to the surface.
What happened in the	No disks floated in the dark, likely because sunlight provides the activation energy needed
dark?	to trigger the chemical reaction of photosynthesis.
What couldn't happen in	In the dark, the light dependent reaction of photosynthesis (electron transport chain)
the dark?	couldn't occur.
Photosynthesis Factors	Light, water and temperature

			Unit	4				
People			Significance		DNA Structure			
Griffith, Avery, He	ershey & Cha	ase	DNA is genetic material					
Chargaff			A=T, G=C				by hydrogen bonds.	
Franklin & Wilkins	5		double helix		The backbone is connected by covalent bonds.			
Watson & Crick			3D DNA model, built on					
			others' research			G	phosphate group	
DNA Replication:	creates exac	t cop	ies of genetic info			A	deoxyribose (AKA	
1. double helix unzips								
2. free-floating nucleo	tides pair up	to f	orm complementary strands			G	nitrogen base (va	
3. two identical molec	ules of DNA	form	ed				covalent bond (st	
					(Phospholipid	hydrogen	nucleotide rung	
Replication is carried	out by	enzy	mes		backbone)	bond (weak)		
Importance of hydrog	en bonds	Hydr	ogen bonds are easily					
		brok	en, allowing unzipping		Pyrimidine:		Purine: double rin	
Source of new nucleo	tides	Free	e-floating in nucleus		Cytosine (C)		Guanine (G)	
Result of replication		One	old strand, one new strand		Thymi	ne (T)	Adenine (A)	
How can replication o	occur in a	It be	gins at many different			Charg	off's Pulo	
few hours?		poin	ts throughout the strand		300	-	aff's Rule e = amount of thymine	
				_			e = amount of cytosine	
What cells undergo	Somatic co	ells				and of Sudmine		
mitosis?								
What takes place	DNA repli	catio	n (interphase)			Ce	ell Cycle	
before mitosis?					Interphase			
What does mitosis	2 diploid g	genet	ically identical daughter cells		Gap 1 (G ₁)	Cell grov	WS	
produce?					Synthesis (S	6) Cell cop	ies nuclear DNA	
Rates of cell divisionVary widelyS, G2, M stage		ly			Gap 2 (G ₂)	Checkpo	oint	
		ages take about 12 hours in			Mitosis (M			
human cells					Mitosis	Division	of cell nucleus and co	
Why do cells divide?	Volume in	crea	ses faster than surface area,		Cytokinesis	Divides	cytoplasm, makes 2	
	which is th	ne ar	ea of cell membrane that				daughter cells	
	supports of	cell, s	o more SA needed		L	I	~	
			a					

Unit 4

(Phospholipid	A G G G G G G G G G G G G G G G G G G G	nucleotide phosphate group deoxyribose (AKA sugar) nitrogen base (varies) covalent bond (strong) nucleotide rung						
backbone)	oond (weak)	complementary bases						
	Pyrimidine: single ring Purine: double ring							
Cytosine		Guanine (G)						
Thymin	2(1)	Adenine (A)						
	Chargaff's Rule							
		= amount of thymine						
amoun	t of guanine	= amount of cytosine						
	Ce	II Cycle						
Interphase								
Gap 1 (G ₁)	Cell grov	ws						
Synthesis (S)	Synthesis (S) Cell copies nuclear DNA							
Gap 2 (G ₂)	Checkpo	bint						
Mitosis (M)								
Mitosis	Division	of cell nucleus and contents						

Chromosomes

Somatic cells	Diploid body cells (most common), in tissues & organs
Germ cells	Cells in reproductive organisms, develop into gametes in meiosis
Gamete (sex cells)	Haploid cells (egg and sperm) that pass DNA to offspring in chromosomes
Autosome	First 22 homologous pairs of homologous chromosomes
Chromosome	One long continuous thread of DNA; 46 in humans
Sex chromosomes	Last pair of chromosomes controlling development of sexual characteristics
Homologous chromosomes	Pair of chromosomes, one from father and one from mother
Chromatid	Identical half of a chromosome
Diploid	Two copies of each chromosome, in somatic
Haploid	One copy of each chromosome, in gametes
Gene	Code to program production of structural & functional proteins
	20,000 genes store code in nucleotides

Levels of Organization		Stem Cells
Cells	Stem cell	Undifferentiated cell that can become any other cell
Tissues	importance	Treat leukemia, lymphoma
Organs		may repair damaged organs
Organ Systems		may cure diseases (diabetes)

					Mitosis						
	Mitosis Stages: PMAT Interphase Replicates DNA				Cancer	Uncontrolled cell division					
Interphase					Tumor	Disorganized clump of cells					
				Benign	Harmless: cancer cells remain clustered						
Prophase	Prophase DNA condenses into chromosome				_	together, doesn't spread					
Metaphase	Metaphase Chromosomes line up in middle				Malignant	Harmful: Cells break away (metastasize) from					
Anaphase					tumor and spread through body						
					How does	Norma	al cells su	ffer damage to genes that make			
Telophase	Nuclear m	embrane be	egins forming		it form?		l division				
					Sexual reproduction Asexual reproduction						
Cytokinesis	-		telophase:				Offspring comes from single				
			ike 2 identical		cells (egg & sperm)		parent				
	daughter	cells w/ full	sets of DNA		Offspring ge		/	Offspring genetical	v identical		
Meiosis		Mitosis			unique	ine treating		e nopring generican	y lacitical		
2 cell division	ns (PMAT)	1 cell di		-	Eg: meiosis			Eg: binary fission (in			
Produces 4 h			es 2 diploid cells	\dashv	0			prokaryotes)			
Offspring ge	-		ally identical	-	In changing	environi	ments,	In non-changing environments: well-suited to			
unique	1		,		genetic dive						
Sexual repro	duction	Asexual			survival char	nces		environment and e	fficient		
rancis Crick's C	entral Dogr	na			Unit 5			DNA	DNA		
Replication	DNA makin		Prokaryotes	A +		autoplac		DNA deoxyribose	RNA Ribose		
Franscription	DNA makin	-	Eukaryotes		ake place in			Thymine (A=T)	Uracil (A=U)		
Franslation	RNA makin	-	Eukaryotes	•	p and transcription in nucleus anslation in cytoplasm		Double stranded	Single strande			
_				114		topiasin		Double stranded	Single strande		
	iption: copi					l ation: a	1	ds coded by mRNA ba	ase sequences		
Messenger RN		r translation	1		Monomer		Amino				
Fransfer RNA	ibosomal RNA Part of ribosome ransfer RNA Brings amino acids to ribosomes						(polypeptide)				
	Di li igs d		o fibosoffies		Codon			r RNA code for one a			
DNA begins	to unwind				64 combin		-) amino acids exist, so			
		and made fr	om 1 DNA stran	h	per codon Anticodon	acid can be coded by many combos					
RNA strand of	,			u			tRNA's complementary 3-letter codon Start and stop codons (signal ends of gen				
								almost all organisms: suggests			
Mutation: a	ny change ir	organism's	DNA				ommon ancestor; validates gene insertion				
ngle gene muta	ation Ha	open during	replication		Translation	n tools		somes (where proteins are made)			
enes / chromos	some Ha	ppen during meiosis					tRNA (attaches to specific amino acid		-		
utation								inticodon)			
nenotype		/sical charad				1.1.1.1.1.					
lay affect orgar		mature sto					o ribosom		don at a time		
		Change 3D protein shape			2. ribosome pulls mRNA strand through one codon at a time						
	Change in gene regulation			3. tRNA carries free-floating amino acids from cytoplasm to ribosome							
lay not affect			e amino acid				n attracto	complementary tRN	۵		
rganism		'silent" DNA	-					cific amino acid using			
ody cell mutati		n't affect pr n't be passe	otein folding d on				ond toget		anticouon		
ex cell mutation			be harmful or					ther amino acid			
		neficial						ng more amino acids	until ston codo		
atural selectior			int alleles until								
	atural selection Removes mutant alleles until best fits survive				Gene Expre	ession: c	ells can t	urn genes on and off			
auses			ors, mutagens		Cell special	ization Only certain genes are expressed in each cell					
	ne						type				