Honors Biology Unit 7 Study Guide

Manipulating DNA			
Tools to study DNA	Chemicals, computers, bacteria (DNA is too small to see or work with directly)		
Restriction	Cut DNA ("molecular scissors") at specific sites		
enzymes	Look for specific sequence of nucleotides and cuts DNA, leaving many		
	fragments of different lengths		
	Come from bacteria, where they are used to combat viruses		
Gel electrophoresis	Technique using electric current to separate mixture of DNA fragments from each		
	other (smallest fragments move faster and spread more)		
	Creates restriction maps		
Restriction maps	Pattern of bands on gel show lengths of fragments; can help diagnose diseases		
Polymerase chain	Technique used to make identical copies of specific DNA sequence		
reaction (PCR)	Materials:		
	DNA to be copied		
	 DNA polymerases (enzymes, to copy) 		
	 DNA nucleotides (to form new strand) 		
	 two primers (short sequence of DNA acting as starting point for new 		
	strand)		
DNA fingerprint	Type of restriction map used for identification (eg legal cases)		
	Focuses on hypervariable sections of DNA (vary between people)		
	 Almost every person has a unique set of DNA 		

Genetic Engineering

Cloning	Results in clone: genetically identical copy of gene or organism			
	 due to differences in environment, may not be exactly the same 			
	first clone: Dolly the sheep			
	 some simple animals can clone themselves via regeneration (starfish) 			
	Process: in mammals, scientists swap DNA between cells			
	 unfertilized egg taken from animal 			
	 egg's nucleus removed 			
	 nucleus of animal to be cloned implanted into egg 			
	 after embryo grows, it is transported into female 			
Genetic	Changing of an organism's DNA to give new trait (eg adding new genes)			
engineering	Based on use of recombinant DNA (DNA that contains genes from more than one			
	organism) technology			
	Being used to make medicines, vaccines, vitamins, transgenic organisms, etc.			
Transgenic	Has one or more genes from another organism inserted into its genome			
organism	 plants: resistance to frost, disease, insects; increase crop yields 			
	 animals: harder to produce, pass on transgenic trait, used in research 			
	ethical and environmental concerns			
	 decreases genetic diversity, leaving crops vulnerable to disease/pests 			

Genomics and Bioinformatics

Genomics	Study of genomes (genes, gene functions, and entire genomes) Begin with gene sequencing: determining order of DNA nucleotides in genes/genomes Human Genome Project: completed mapping and sequencing of human DNA, still working on identifying genes in sequence	
Bioformatics	Use of computer databases to organize and analyze biological data	
Proteomics	Study & comparison of all proteins that result from an organism's genome (study shared	
	ancestry, disease, potential treatments)	

Honors Biology Unit 7 Study Guide

Genetic Screening and Gene Therapy

Genetic	Process of testing DNA to determine risk of having / passing on genetic disorder	
screening	 can detect genetic disorders: saves lives and helps make tough choices 	
Gene	Replacement of faulty genes	
therapy	 can replace defective gene or add new gene into person's genome 	
	great potential	
CRISPR-	Used to edit genome with 2 key molecules:	
Cas9	Cas9: "molecular scissors" enzyme	
System	• guide RNA (gRNA): RNA that binds to complementary DNA strand, makes sure Cas9	
	enzyme cuts at right point in genome	
	applications: treat medical conditions, edit genomes of somatic or germline cells	

DNA Fingerprinting

DNA Fingerprinting		A	=
Hypervariable	Sections of DNA that vary a lot in humans, so can		
regions	differentiate between individuals (core sequences act as	======	
	genetic markers)		
Paternity	Almost all bands should match mother		
cases	Any fragments in child not in mom must be from		
	biological father		565 6 5205
	 M=mother, F=father, C=child 	MCFMCF 1 2	1 2 3 4 5 6 7 Suspects

Pedigree Analysis

Autosomal dominant	Autosomal recessive	X-linked recessive	
A=trait a=normal	A=normal, a=trait	X ^A =normal, X ^a =trait, Y=Y chrom.	
If a person has trait, at least	If both parents are affected are	Father-to-son transmission cannot	
one of parents will have trait	affected, all children are affected	occur (cuz passes on Y)	
If two individuals have a	If both parents have dominant	If mom has X-linked recess. trait,	
dominant trait, their offspring	(heterozygous) trait, kids may or males have trait, females		
might or might not have trait	may not have the trait	have if father also has trait	
YES, possible	Recess. traits can skip generations	More males than females affected	
aa 🗛 or AA	YES	If both parents are affected, all	
	Aa <u>Aa</u>	children will be affected	
	\cap \Box	YES	
		Xª Xª X ^A Y	
Aa or			
		X ^A Y	
NO, not possible	NO	NO	
aa <u>aa</u>	aa <u>aa</u>	Xa Xa X ^A Y	
\cap \Box			
	Aa or AA	X ^A Y	