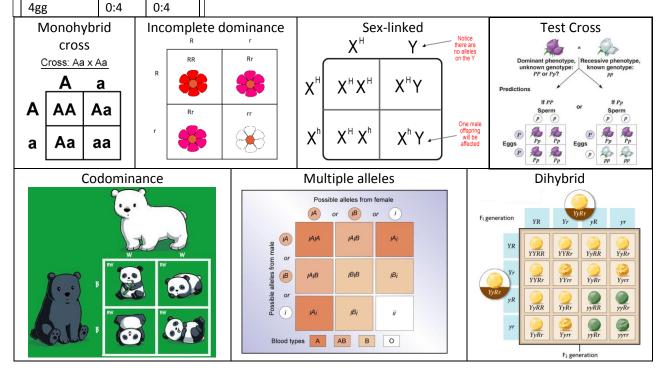
Honors Biology, Unit 6 Study Guide


Terminology

Genetics	Study of biological inheritance patterns and variation		
Gene	Piece of DNA that instructs a cell to make a certain protein (structural or functional)		
Allele	One of many forms of a gene, two alleles per gene (eg B, b)		
Dominant	Allele expressed when 2 different alleles (Bb) OR 2 dominant alleles are present (BB)		
Recessive	Allele only expressed if 2 copies of recessive are present (bb)		
Homozygous	Two of the same allele (eg BB, bb)		
Heterozygous	Two different alleles (eg Bb)		
Genotype	Genetic makeup of a specific set of genes (eg BB, Bb, bb)		
Phenotype	Physical characteristics of offspring		
Genome	Collection of all the organism's genetic material		
Carrier	Heterozygous for disease; carries allele for disorder but doesn't express symptom		
Pedigree	Genetic map where phenotypes used to infer genotypes		

Mendel's Experiments

Before experiment – 3 decisions:	After experiment - 3 key conclusions:	
Control over breeding: allowed	Traits are inherited as discrete units: traits don't blend,	
no pollen from other flowers	independently expressed (eg pea plants can be green OR yellow)	
Use of purebred (homozygous)	Law of segregation: organisms inherit two copies of each gene,	
plants	one from each parent	
Observation of "either-or" traits:	Law of segregation: organisms donate one copy of each gene in	
only two forms of each gene	their gamete (2 copies of each gene separate during gamete form)	

Punnett Squares		Pea plants	reproduce quickly; control how they mate	
	Natio	P (parental)	Crossed purebred	P ^T P P
1GG, 2Gg, 1:2:1 3 1gg	3:1	generation	white (pp) w/ purebred purple (PP)	
	•	F1 (1 st filial)	All purple flowers (Pp)	Purple (PD)
4GG 4:0 4	1:0	F2 (2 nd filial)	trait for white hidden	Fry F1 generation F2 generation

© Genavieve Koenigshofer 2017

0			
Incomplete dominance Traits blend: eg red+blue=purple			
Codominance	Both traits are expressed: eg a roan cow has both red and white hairs		
Sex-linked (see Sex-	Most sex-linked genes are only on the X chromosome (X ^H , X ^h)		
Linked Traits)	So only females (XX) can be carriers; males (XY) express whatever is on their X		
Multiple alleles	Expresses a range of dominance: eg blood types A (I ^A I ^A or I ^A i), B(I ^A I ^B or I ^B i),		
	AB(I ^A I ^B), O (ii); A and B are codominant, O is recessive		
Dihybrid cross (see Law	2 traits; pheno ratio 9:3:3:1		
of Independent	Make gametes by FOILing: TtBb = TB, Tb, tB, tb; PPGG = PG		
Assortment)			
Test cross Cross btwn a organism with a recessive phenotype, known genotype			
	dominant phenotype, <u>unknown genotype</u> (PP or Pp)		

Sexual Reproduction creates offique dene combinations			
Independent assortment	Law of independent assortment: allele pairs separate independently		
	of each other during meiosis		
Random fertilization of gametes	70 trillion chromosome combos possible		
Crossing over	Exchange of chromosome segments btwn homologous		
	chromosomes in Prophase I or Meiosis I, results new gene combo		
Linked genes (see gene linkage)	Genes located on same chromosome inherited together		
	 Closer tog 	gether = higher chance of inheriting together	
	 If far apart, crossing over may separate them 		
Independent Assortment		Crossing Over	
Possibility 1	Possibility 2 Crossing over exchanges segments of DNA between homologous chromosomes.		

Sexual Reproduction Creates Unique Gene Combinations

Possibility 1	Possibility 2	Crossing over exchanges segments of DNA between homologous chromosomes.			
Two equally probable arrangements of chromosomes at metaphase I		Image: Two homologous chromosomes pair up with each other during segments cross. Image: Two homologous chromosomes pair up with each other during segments cross. Image: Two homologous chromosomes pair up with each other during segments cross. Image: Two homologous chromosome. Image: Two homologous chromosome.			
	Metaphase II Daughter cells	Synthesize Draw the four chromosomes that would result after the above chromosomes go through meiosis. Gene Linkage gene A gene B and B are not linked to C and D because they are so far apart. Crossing over is likely to occur in the space between genes B and C, thereby separating A and B from C and D.			
Combination 1 Combinatio	on 2 Combination 3 Combination				
		gene C C and D are referred to as linked because they would likely be inherited together.			
Chromosomes	and Phenotype				
Autosomal	Recessive disorders: must have	2 copies of recessive allele to have disorder			
traits	 often appears in offspring 	ng of carriers			
	•••	, affects sweat glands and mucus glands			
-		on, eg Huntington's Disease: damages nervous			
	system and usually appears during adulthood, after having children				
Sex-linked traits	• Many genes are only contained on larger X chromosome (eg X ^H , X ^h)				
	• Females (XX) can be carriers for traits because they have two X chromosomes				
	• Males (XY) who has gene for disorder on X chromosome will have disorder,				
	because no second X to mask effects				
	 X Chromosome inactivation: 1 of 2 X chromosomes in females is randomly 				
	turned off creating patchwork of two types of cells				

	• X Chromosome inactivation: 1 of 2 X chromosomes in females is randomly		
	turned off, creating patchwork of two types of cells		
Polygenic traits	Two or more genes determine trait: eg skin color, human eye color		
Epistasis	One powerful gene overshadows all of the others, eg albinism: a person has genes		
	for pigments, but recessive albinism gene overpowers and removes pigments		
Gene Linkage &	Linkage & Thomas Hunt Morgan studied linked genes with fruit flies		
Mapping (see	Linked genes not inherited together every time because of crossing over		
Linked Genes)	Linkage maps estimate distances between genes, make genetic maps of species		

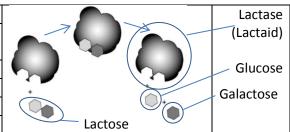
© Genavieve Koenigshofer 2017

Labs

Shiba Inu Lab: cream dogs are example of epistasis (one gene overpowers the rest)

- Two genes: first is normal gene for fur color (red/sesame/black and tan)
- if recessive form of second gene, overpowers first gene and makes entire dog cream

	Karyotype Lab							
Karyotype	picture of all chromosomes in a cell; identifies extra,	in the second	9	12	fi fi	Ĭ	*	
	too few, or parts missing of chromosomes	a da	and the second s			1		
Autosomes	First 22 pairs of chromosomes, 1 from each parent	17 50 00 cc cc cc						
Sex chromosome	xX or XY, get either X or Y from dad		1010	Cont .	Part .	and	1 1 1	12
Nondisjunction	Cause of Down, Turner syndrome: genes don't split	100	źś.	ē ž	7	8 8	10	ធិន័
	correctly and result in extra/missing chromosomes	13	14	15		16	17	18
Key features to	Size: should be similarly sized	8.5	BB			6.6		or the
match	Centromere position: where chromatids are joined	19	20	21	-	22	XX	XY
chromosomes	Banding pattern: Giemsa dye causes dark bands on A	& T, so bands should line up						


Disease	Cause	Symptoms
Down Syndrome	Extra chromosome 21	
Trisomy 13Extra chromosome 13		Early death
Cri du Chat	Deletion of chromosome 5	Baby cries sound like cat wails
Turner Syndrome	Missing/incomplete X - X	Girls are shorter, start puberty late
Klinefelter Syndrome	Extra X chromosome - XXY	Guys: less muscles, little facial/body hair, infertile
Williams Syndrome	Missing gene material from	Circulatory system issues, heart defects
	chromosome 7	

Lactose Intolerance

Lactase (enzyme/protein) breaks lactose (sugar) into glucose and galactose Ethnic groups that didn't raise dairy animals are generally intolerant (Asians, Africans, 75% of world!) Independent variable: solutions tested (Lactaid, milk, Lactaid+milk, glucose)

Dependent variable: presence of glucose

Enzymes	
speed up chemical reactions that would take too long	
to complete	
only fit certain substrate, can't be any reaction	Ļ
not used up afterwards; they are reusable	
Enzyme optimal temp: body temp	(
This reaction is an example of catabolism/hydrolysis \rightarrow	

		Epigenetics	
Epigenetics	Study of changes in heritable phenotype without a change in genotype		
	Phenoty	pe is affected by more than just gene expressior	n, environment plays a part
Epigenome	second	ayer of DNA structure that changes during your	lifetime
	made u	o of chemical tags that turn genes on and off bas	ed on outside signals
Active Gene	Loosely	wrapped; less methyl; more acetyl	Lés methyl-genes ON
Inactive Gene	Tightly v	vrapped; more methyl; less acetyl	Mote methyl - Genes OFF
Reprogramming	During development, epigenetic tags are erased (blank slate) so cells can specialize		
Imprinting	Certain epigenetic tags make it through reprogramming & pass unchanged to offspring		
Licking Rats	Mothers lick their rats to loosen and activate GR gene in rats, making them calmer		
Cancer Cells	Lower level of methylation, activates cell growth genes, chrom. instable, imprint loss		
Gene Regulatory	atory Protein Carry signals: switch genes on/off, recruit enzymes that add/remove tags		
Twins	Share genome, environments so epigenome changes:		
	• both twins get disease, disease in genome; one twin gets disease, in epigenome		