Chapter 11 Study Guide ## **Genetic Variation Within Populations** | Natural
Selection | Acts on phenotypes | | |--------------------------------|---|---| | Darwin's finches | Show evolution through beak shapes because of different food sources | 1. Georgias magedractris. 2. Georgias partois. 3. Georgias partois. 5. Liveliadas calivales. 6. Liveliadas calivales. | | Gene pool | Genetic variation within a population (large gene pool is desired for a population) | GENE POOL | | Gene
frequency | Alles have different gene frequencies within a population | gene frequency = .33 | | Genetic
variation
causes | Mutations (natural selection) Recombination Meiosis Crossing over of chromosomes | Homologous chromosome crossover chromatids aligned Non-recombinant chromatids | #### **Natural Selection in Populations** | Microevolution | Observable change in allele frequency of a population over time Occurs in a small population in a small scale Natural selection can change distribution of trait along 3 paths | MACRO MICRO MICRO MICRO MICRO MICRO MICRO | |----------------|--|---| | Macroevolution | Major evolutionary change Occurs in a large population in a large scale | MACRO MICRO MICRO MICRO MICRO MICRO MICRO | #### 3 Paths of How Evolution Can Change Microevolution #### **Other Mechanisms of Evolution** | Gene flow | Movement of alleles from one population to another (immigration, emigration) Effects: increases genetic variation of receiving population, keeps gene pools similar between populations Lack of gene flow = can create genetically different populations/increases chance of | Gene flow 20 blue 10 red 20 red | |------------------|---|--| | Genetic
drift | Changes in allele frequencies due to chance (bottleneck effect, founder effect) Effects: allele frequencies are different from original population Small populations are more likely to be affected by chance Lethal alleles may be more common Loss of genetic variation | Original Population Original Population Original Original Population Ori | | Sexual selection | Occurs when certain traits increase mating success Certain traits can become very exaggerated (traits are not always adept for survival) | | #### Hardy-Weinberg Equilibrium - Describes what a population has to do to <u>not</u> evolve with 5 conditions: - 1. Maintain a large population (no genetic drift) - 2. No emigration or immigration (no gene flow) - 3. No mutations - 4. Random mating (no sexual selection) - 5. No natural selection (all traits are equal) - Equation is used to predict genotype frequencies in a population - If calculated frequencies match actual frequencies, then population is in equilibrium ## **Speciation through Isolation** | Reproductive isolation | When members of different populations can no loner mate successfully with one another (evolved too different from one another) | WHAT IS REPRODUCTIVE ISOLATION O Study.com | |------------------------|--|---| | Behavioral isolation | Isolation caused by differences in mating behavior | Agriculty protessions © Kest Limital Sides | | Geographic isolation | Physical barrier that divides 2 populations | Examples: ocean, mountains, river, etc | | Temporal isolation | Timing of mating between populations is different | Wood Leopard frog frog March 1 April 1 May 1 | ### **Patterns of Evolution** | | Volution | , | |------------------------|--|--| | Convergent evolution | Evolution towards similar characteristics in unrelated species (related to analogous structures) | Taking Right to a spiriture of the state | | Divergent
evolution | Related species evolve in different directions/become different (related to homologous structures) | Harrian Horse Cat But Bird Whate Whate Cat See See See See See See See See See Se | | Coevolution | 2 or more species evolve in response to one another (competition/predators vs prey) | | | Extinction | Elimination of a species from Earth | | | Punctuated equilibrium | Short spans of rapid evolution, then long periods of time without change | Morphological Change (a) Gradualiam model (b) Punctuated equilibrium model | | Adaptive radiation | Diversification of one ancestral species forming into many different species | Adaptive radiation in Galapagos finches Ingo the form Committed build passed |