Chapter 11 Study Guide

Genetic Variation Within Populations

Natural Selection	Acts on phenotypes	
Darwin's finches	Show evolution through beak shapes because of different food sources	1. Georgias magedractris. 2. Georgias partois. 3. Georgias partois. 5. Liveliadas calivales. 6. Liveliadas calivales.
Gene pool	Genetic variation within a population (large gene pool is desired for a population)	GENE POOL
Gene frequency	Alles have different gene frequencies within a population	gene frequency = .33
Genetic variation causes	 Mutations (natural selection) Recombination Meiosis Crossing over of chromosomes 	Homologous chromosome crossover chromatids aligned Non-recombinant chromatids

Natural Selection in Populations

Microevolution	 Observable change in allele frequency of a population over time Occurs in a small population in a small scale Natural selection can change distribution of trait along 3 paths 	MACRO MICRO MICRO MICRO MICRO MICRO MICRO
Macroevolution	 Major evolutionary change Occurs in a large population in a large scale 	MACRO MICRO MICRO MICRO MICRO MICRO MICRO

3 Paths of How Evolution Can Change Microevolution

Other Mechanisms of Evolution

Gene flow	 Movement of alleles from one population to another (immigration, emigration) Effects: increases genetic variation of receiving population, keeps gene pools similar between populations Lack of gene flow = can create genetically different populations/increases chance of 	Gene flow 20 blue 10 red 20 red
Genetic drift	 Changes in allele frequencies due to chance (bottleneck effect, founder effect) Effects: allele frequencies are different from original population Small populations are more likely to be affected by chance Lethal alleles may be more common Loss of genetic variation 	Original Population Original Population Original Original Population Original Ori
Sexual selection	 Occurs when certain traits increase mating success Certain traits can become very exaggerated (traits are not always adept for survival) 	

Hardy-Weinberg Equilibrium

- Describes what a population has to do to <u>not</u> evolve with 5 conditions:
 - 1. Maintain a large population (no genetic drift)
 - 2. No emigration or immigration (no gene flow)
 - 3. No mutations
 - 4. Random mating (no sexual selection)
 - 5. No natural selection (all traits are equal)
- Equation is used to predict genotype frequencies in a population
- If calculated frequencies match actual frequencies, then population is in equilibrium

Speciation through Isolation

Reproductive isolation	When members of different populations can no loner mate successfully with one another (evolved too different from one another)	WHAT IS REPRODUCTIVE ISOLATION O Study.com
Behavioral isolation	Isolation caused by differences in mating behavior	Agriculty protessions © Kest Limital Sides
Geographic isolation	Physical barrier that divides 2 populations	Examples: ocean, mountains, river, etc
Temporal isolation	Timing of mating between populations is different	Wood Leopard frog frog March 1 April 1 May 1

Patterns of Evolution

	Volution	,
Convergent evolution	Evolution towards similar characteristics in unrelated species (related to analogous structures)	Taking Right to a spiriture of the state of
Divergent evolution	Related species evolve in different directions/become different (related to homologous structures)	Harrian Horse Cat But Bird Whate Whate Cat See See See See See See See See See Se
Coevolution	2 or more species evolve in response to one another (competition/predators vs prey)	
Extinction	Elimination of a species from Earth	
Punctuated equilibrium	Short spans of rapid evolution, then long periods of time without change	Morphological Change (a) Gradualiam model (b) Punctuated equilibrium model
Adaptive radiation	Diversification of one ancestral species forming into many different species	Adaptive radiation in Galapagos finches Ingo the form Committed build passed Committed build passed