
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
I. Force (2.1) \qquad
A. force- is a push or pull

1. A force is needed to change an \qquad
object's state of motion
2. State of motion may be one of two \qquad things
a.At rest \qquad
b. Moving uniformly
along a straight-line path.
\qquad
\qquad
\qquad

B. Net force

1. Usually more than one force is acting on an object \qquad
2. combination of all forces acting on object is called net force. \qquad

3. The net force on an object changes its
\qquad motion \qquad
\qquad
\qquad
4. Can add or subtract to get resultant net force
5. If forces acting on object equal zero then we say the net force acting on the object $=0$
6. Scientific units for force are Newtons (N)

C. Tension and Weight
7. Tension is a "stretching force"

8. When you hang an object from a spring scale the \qquad there are two forces acting on object.
a. Force of gravity pulling down (also called \qquad weight)

b. Tension force pulling upward
c. Two forces are equal and opposite in direction and add to zero (net force =0)
9. Forces can be represented by arrows
a. length of arrow represents amount (magnitude) of force

b. Direction of arrow represents direction of force
c. Refer to arrow as a vector (represents both magnitude and direction of force
10. Vector quantity- needs both magnitude and direction to complete description (i.e. force, velocity, momentum)

11. Scalar quantity- can be described by magnitude only and has no direction (i.e. temperature, speed, distance)

\qquad
II. Mechanical Equilibrium (2.2)
A. Mechanical equilibrium- a state wherein no physical changes occur (state of steadiness)
12. When net force equals zero, object is said to be in mechanical equilibrium
a. Known as equilibrium rule

b. Can express rule mathematically as

$$
\Sigma F=0
$$

1). \sum symbol stands for "the sum of"
2). F stands for "forces"

III. Support Force (2.3)
A. support force- the upward force that balances the weight of an object on a surface

1. The upward force balances the weight of an object
2. Support force often called normal

\qquad
B. For an object at rest on a horizontal surface, the support force must equal the objects weight.
3. Upward force is positive (+) and the downward force is negative (-).
4. Two forces add mathematically to zero

$$
\Sigma F=0
$$

IV. Equilibrium of Moving Objects (2.4)
A. Equilibrium can exist in both objects at rest and objects moving at constant speed in a straight-line path.

B. Objects at rest are said to be in static equilibrium
C. Objects moving at constant speed in a straight-line path are said to be in dynamic equilibrium

dynamic equilibrium
V. Vectors (2.5)

A. Parallel vectors

1. Add vectors if in same direction
2. Subtract vectors if in opposite direction
3. The sum of two or more vectors is called the resultant vector.

B. Parallel vectors- simple to add or subtract

C. Non-parallel vectors
4. Construct a parallelogram to determine resultant vector
5. The diagonal of the parallelogram shows the resultant
a. Perpendicular vectors

\qquad
b. Perpendicular vectors with equal sides (special case)
1). For a square the length of diagonal is $\sqrt{2}$ or 1.414
\qquad
2). Resultant $=1.414 \times$ one of sides

c. Parallelogram (not perpendicular)

- Construct parallelogram
- Construct with two vectors as sides
-Resultant is the diagonal

C. Applying the Parallelogram Rule- as angle increases, tension increases.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pythagorean Theorem- can be used if vectors added are at right angles

$$
R^{2}=A^{2}+B^{2} \text { or } R=\sqrt{A^{2}+B^{2}}
$$

SOHCAHTOA

- $\boldsymbol{\operatorname { s i n }}, \mathbf{c o s}$, and $\boldsymbol{\operatorname { t a n }}$ are functions of the angle of a triangle compared to the lengths of the sides of a triangle
- If you know the distances of the triangle sides, you can determine the inside angles.
- If you know the angle and one side, you can calculate the length of the other side of the triangle.
- Remember the following acronym: SOHCAHTOA

$$
\begin{aligned}
& \sin \theta=\left(\frac{O}{H}\right) \\
& \cos \theta=\left(\frac{A}{H}\right) \\
& \tan \theta=\left(\frac{O}{A}\right)
\end{aligned}
$$

These will give you the formula depending on which side or angle you need to calculate
\qquad

Components calculated using following formulas

$$
\begin{aligned}
& A_{x}=A \cos \theta ; \text { therefore, } \cos \theta=\left(\frac{\text { adjacent }}{\text { hypotenuse }}\right)=\left(\frac{A_{x}}{A}\right) \\
& A_{y}=A \sin \theta ; \text { therefore, } \sin \theta=\left(\frac{\text { opposite }}{\text { hypotenuse }}\right)=\left(\frac{A_{y}}{A}\right)
\end{aligned}
$$

\qquad

When angles larger than 90°, sign of one or more components may be negative

- Remember what the sides of a triangle are called

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example:
$\sin 25^{\circ}=\frac{\text { Length of Opposite side }}{\text { Length of Hypotenuse }}$
$\sin 25^{\circ}=\frac{\text { Length of Opposite side }}{100 \text { meters }}$
length of Opposite side $=38.3$ meters
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Graphical Addition of Vectors

-Simple method for combining vectors to get resultant vector \qquad
-Use ruler to measure length of vector
-Use protractor to measure angle

