CORNELL NOTES

Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned sections (if completed) and turned in to your teacher at the end of the Unit for scoring.

UNIT 2: CELLS Chapter 4: Cells and Energy

I. Chemical Energy and ATP (4.1)

A. The **chemical energy** used for most cell processes is carried by _____

1. All chem	carbon-based molecules in their	n <u>store</u>
	a important energy sources.	_ and most
	b. Energy does come from	indirectly
2. All	All carbon-based molecules in	
	a. ATP (adenosine triphos	phate) is molecule that rom breakdown of food
	b. ATP carries energy cells	s can use
	c. Used for building molect by active transport, etc.	ules, moving materials
3. En grou	ergy of ATP <u>released</u> when p is	
	a. Bond holding is unstable and very easil	phosphate group y broken
	b. When loses 3rd phospha (adenosine diph	ate group, ATP becomes osphate)
	1. ADP is a molecule than ATP	energy
	2. Can be <u>convertec</u> <u>addition</u> of phosphate group)	<u>d</u> back into ATP with (adding
phosphate added energy energy from breakdown of molecules	ATP denosine phosphate removed phosphate removed from by energy released for cell functions to hell	e breakdown of ATP to and production of ATP ADP can be represented is requires complex o of lp.

B. Organism	s <u>break down</u>	ba	ised molecules
to produce A			
1. Fo	od you eat	contain A	ATP
	a. Food must first b down into smaller i	pe molecules)	(break
	b. Foods provide d (calories)	lifferent amounts	of
2. Nu mole	mber of ATP molec cule broken down ((cules <u>depends</u> or Carbohydrate, F	nof Protein, lipid)
	a broken down to ma	mo ake ATP	st commonly
	b. Break down of _ molecules of ATF	0	_ yields
3	store abo	ut 80% of energy	/ in your body
	a. When broken do	own, yield the mo	ost ATP
	b. A typical triglyc molecules of ATP	eride yields abo	ut
4	have about	t as much ATP a	s carbohydrates
	a. <u>Less likely</u> to be	broken down	
	b. Amino acids <u>ne</u>	eded to build n e	ew
5. Pla	nts also need ATP		
	a. Plants <u>do not</u>	to obtai	n energy
	b. Use energy proc (make sugars from	duced by sunlight)	
C. A few type	es of organisms do sis as a source of e	not need sunligh nergy	t and
1. Sor energ	me organisms use _ y (sugars)		to produce
2. Use	ed by organisms in _		vents

II. Overview of Photosynthesis $(4, 2)$
A. Photosynthetic organisms are
1. Producers make their own source of energy
2 use photosynthesis and are producers
a. photosynthesis is <u>process</u> that captures energy from to make sugars that store chemical energy
b. Uses light made up of several (wavelengths) of light.
1). Plants use molecule in chloroplast called
2). Two main types of chlorophyll
a. Chlorophyll a and chlorophyll b
b. Absorb mostly and wavelengths.
c. Plants appear because reflect green light (not absorbed)
B. Photosynthesis in plants occurs in
1. Most of chloroplast are in cells
 <u>main parts</u> of chloroplasts needed for photosynthesis
a stacks of coin-shaped, membrane- enclosed compartments called thylakoids .
b. Membrane in <u>thylakoids</u> contain
c. Stroma is the that surrounds grana
C. Photosynthesis occurs in main stages
1. Light-dependent reactions (capture from)
a. Occurs within and across of thylakoids
b and are needed.

1. Cellular respiration is (requires oxygen)				
2. Takes place in (cells "powerhouse")				
B. Process starts with (means "glucose breaking")				
1. 6-carbon glucose <u>broken into</u> two 3-carbon molecules of				
2. Produces molecules of ATP (makes 4, but uses2 ATP = net of 2 ATP)				
3 process (does <u>not</u> require oxygen)				
4. Takes place in				
5. Products of glycolysis used in respiration process.				
2 ADP 2 ATP				
000 000 000 000 000 000 000 000 000 00				
glucose 2 three-carbon molecules				
C. Cellular respiration is like image of photosynthesis				
1. Chemical equation for cellular respiration is basically the of that for photosynthesis				
2. Structures in chloroplast and mitochondria are				
D. Cellular Respiration takes place in main stages				
1 cycle - takes place in interior space of				
acarbon molecules produced in glycolysis are broken down in a cycle of chemical reactions				
b is <u>given off</u> (CO ₂)				
cproduced is transferred to 2nd stage (energy in the form of ATP and other "charged" molecules- NADH and FADH₂)				
2. Electron Transport Chain-				
a. Takes place in membrane				

١	1. Products of alcoholic fermentation include	
	2. Glycolysis <u>splits</u> , and produ enter fermentation	cts
	3. Energy from NADH is used to <u>spit</u> pyruvate int	o an
	and	
	4 is changed back into NAD ⁺	
	5. NAD⁺ is recycled to	
	N	
	GLYCOLYSIS ALCOHOLIC FERMENTATION	
	2 ADP 2 ATP	
gggg	GG GGG GGG + GGG + 2 alcohol +	2 C
Sideos	2 NAD 2 NADH 2 NADH 2 NAD	diox