
Final Review (all study guides combined)

1. Chemical Bonds

- -3 types of bonds = ionic, covalent, hydrogen
 - 1) Ionic = 2nd strongest, formed when 1 atom gives electron(s) to another, ex: NaCl
 - 2) Covalent = strongest, formed when atoms share electrons, ex: all organic compounds
 - 3) Hydrogen = weakest, formed by hydrogen acquiring an electron from another atom, ex: H₂O

2. Enzymes

- -biological catalysts that speed up reactions in the body that would take lots of time by itself
- -enzymes speed up chemical reactions
- -they can only work in specific conditions, such as a specific pH and temperature

- -can put atoms together or break them apart
- -structure of enzyme determines function, like a puzzle piece

3. Organic Compounds

- -Carbon properties
 - -Can form up to 4 covalent bonds, including other carbon atoms
 - -Has 3 structures: straight chain, branched chain, ring
 - -Carbon compounds formed with monomers that make up polymers

Type of molecule	Carbohydrates	Proteins	Lipids	Nucleic Acids
monomer	Monosaccharides	Amino acids	Glycogen + sugar	Nucleotide
polymer	Polysaccharides	Proteins	Fats, oils, waxes	DNA, RNA
importance	Build cell walls,	Build different	Build cell	Store genetic
	plants store	structures, perform	membranes,	information
	glucose in starch	different functions	used as quick	
	form		energy	
Structure of	⁶ ¢н ₂ он	H H O		HNH
monomer	6 H H OH H OH H OH	H-N-C-C-OH Amino Carboxyl Group R Group Side Chain		Phosphate group OH H Sugar

- -dehydration synthesis = water is removed to bond atoms, ex: glucose + galactose = lactose + H₂O
- -hydrolysis = water added to split molecules, ex: lactose + water = glucose + galactose
- -lipoproteins = proteins that transport lipids through blood plasma to give energy to cells,
 - -good LP = HDL = keeps bloodstream clean, puts all cholesterol back in liver
 - -bad LP = LDL = very large, clogs up bloodstream, causing problems
- -saturated vs unsaturated = saturated: animal fat, considered bad, higher concentration of H, single bonded, solid at room temp; unsaturated = vegetable oil, lower concentration of H, double bonded, liquid at room temp

4. Homeostasis

- = maintenance of internal conditions
- -ex: thermostat
- -negative feedback system: doing the opposite to maintain balance ex: when too hot, body sweats
- -positive feedback system: keeps increasing until negative feedback neutralizes
- -when imbalanced, body does opposite, like sweating

5. pH

- -0-14, <7=acid, >7=base, 7=neutral
- -acids have higher H⁺ concentration than bases

6. Indicators

- -Benedict's solution = simple sugar, original color = blue, changes to = green-red
- -Biuret's Reagent = proteins, original color = blue, changes to: purple
- -Sudan III = lipids, original color = orange, changes to: vivid orange/orange concentrates
- -lodine = starch/complex sugars. Original color = yellow/brown, changes to = blue/black

7. Scientific Method

Steps:

- a. Observation
- b. Hypothesis
- c. Experiment/testing hypothesis
- d. Analyze data
- e. Draw conclusions
- -Controlled experiment is important because otherwise, the results would be skewed since more than one variable would be changed
- -dependent variable = tested (responding)

- -independent variable = changed purposely (manipulated)
- -controlled variable = stays the same (constant)
- -dependent variable = y axis; independent = x axis

8. Properties of Water

- -Polarity of water molecule = H atoms are slightly positive, O atom slightly negative
- -adhesion= water sticking to something else, like a towel
- -cohesion= water sticking to itself, like surface tension

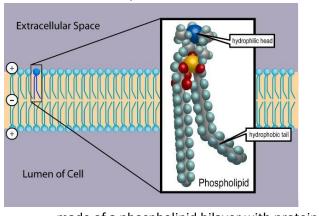
9. Chemistry

- -ions = slightly charged atoms
- -atoms = building blocks of matter
- -elements = a specific type of atom
- -chemical compound = elements bonded together
- -chemical reactions:
 - a. Reactants and products: reactant + reactant products (arrow goes both ways)
 - b. Activation energy = energy required to start reaction
 - c. Endothermic reaction = products have more energy than reactants
 - d. Exothermic reaction = products have less energy than reactants
 - e. Equilibrium = reactants and products form at the same rate

-solutions:

- a. Solute = substance that is dissolved
- b. Solvent = substance that dissolves solute
- c. Homogeneous mixture = cannot see different parts, cannot be separated easily
- d. -Polar solvents dissolve polar solutes, nonpolar solvents dissolve nonpolar solutes, polar vs nonpolar generally remain separate

-suspensions:

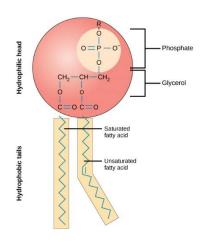

- a. Precipitate = insoluble solid
- b. Heterogeneous mixture = can see different parts, separates easily

Cell Test

1. Cell Structures and Organelles

- -Nucleus = control center of cell, stores DNA
- -Nucleolus = makes ribosomes
- -Nuclear membrane/Nuclear envelope = protects genetic material
- -Cytoplasm = where important chemical reactions take place
- -Cell membrane = controls what goes in and out of cell

- fluid mosaic model (molecules found inside membrane)


-made of a phospholipid bilayer with proteins embedded

-phospholipids:

- -structure (fatty acid):
- -hydrophilic part = head
- -hydrophobic part = tail
- -Location in cells = cell membrane
- -Semipermeable = some can molecules can get through, some cannot
- -Ribosomes = make proteins
- -Rough ER = makes proteins (ribosomes embedded) and makes lipids
- -Smooth ER = makes lipids
- -Golgi apparatus = cell's post office, packages, labels, and sends proteins using vesicles
- -Lysosomes = kill harmful bacteria and recycle used cell parts
- -Mitochondria = break down sugar for the cell to use as energy
- -Chloroplasts = produce sugar through photosynthesis
- -Vacuole = stores waste, useful materials
- -Cytoskeleton = made of microtubules
 - -Microtubules = tine tube=like structures that go around cell
 - -Composition = tubulin
 - -Importance = aids in cell division, help motor proteins travel around cell, gives cell shape
- -DNA/Chromatin = stores genetic info
- -Centrioles/Centrosome = make microtubules
- -Cell wall = gives plant cell box-like shape; composed of cellulose
- -Plastids = double membrane bound organelles, ex: chloroplast
- -Difference between plant and animal cells:
 - -Shape: plant = box, animal = bubble/many different sizes
- -Organelles: lysosome, centrioles: only in animal; cell wall, chloroplasts, large central vacuole = only in plant
- -Steps for producing and sending a protein: nucleus sends instructions, ribosomes makes it, sent to Golgi apparatus where it is packaged, labeled, and shipped

2. Cell Transport

- -Active transport = sending something against concentration gradient, needs energy to do
- -Passive Transport = transport that does not require energy, ex: diffusion, osmosis
- -Diffusion = high-low concentration
- -Osmosis = diffusion of water molecules
- -Facilitated diffusion = molecules go through protein channels in membrane which regulate diffusion
- -Endocytosis = the cell membrane curving to engulf a molecule
- -Exocytosis = cell membrane curving away to get rid of molecule

- -Transport proteins = proteins embedded into membrane that control what goes in and out
- -Concentration gradient = natural flow of molecules/high to low
- -Isotonic = water moves in and out of cell at constant rate
- -Hypertonic = solute surrounds cell, which makes the water flow out of cell
- -Hypotonic = water surrounds cell, so cell becomes bloated with water
- -Surface area to volume ratio = different purposes for cells determine shape, ex: nerve cell = cylinder, fat cell = sphere
- -Dynamic equilibrium = equilibrium that changes
- -Dialysis tubing = man-made semi permeable membrane

3. Homeostasis

- -Definition = maintenance of internal conditions
- -Examples: sweat, shiver
- -Negative feedback = body returns parameter to normal
- -Positive feedback = body increases parameter until negative feedback system kicks in
- -Homeostatic imbalances and responses = body too cold = shivers, body too hot = sweat

4. Scientific Method

- -steps: question, hypothesis, design/perform experiment, analyze data, draw conclusions
- -controlled variables = do not change, help experiment be accurate
- -dependent variable = measured in response to independent
- -independent variable = changed on purpose
- -controlled variables= do not change

5. Cell Theory

- -prokaryotes vs eukaryotes = no nucleus, nucleus
- 3 parts of theory- 1) All living things composed of cells, 2) Cells are made from other cells,
- 3) Cells are fundamental basic unit of life
- -applies to living things
- -Robert Hooke = observed cork cells and put the name "cell" in place
- -Endosymbiotic theory:
 - -Occurred by cells engulfing other things and they reproduced inside of cell by themselves
- -evidence: mitochondria and chloroplasts have their own membrane and ribosomes, much like a prokaryote

6. Organic Compounds

-4 types of carbon compounds +where they are found:

Type of molecule	Carbohydrates	Proteins	Lipids	Nucleic Acids
monomer	Monosaccharides	Amino acids	Glycogen + sugar	Nucleotide
polymer	Polysaccharides	Proteins	Fats, oils, waxes	DNA, RNA
importance	Build cell walls	Build different	Build cell	Store <mark>genetic</mark>
	(cellulose), plants	structures, perform	<mark>membranes</mark> ,	information
	store glucose in	different functions,	used as quick	
	starch form,	<mark>enzymes</mark> ,	energy	
Structure of	⁶ ¢н ₂ он	H H O		H_N_H
monomer	5 H H OH H OH H OH	H-N-C-C-OH Amino Carboxyl Group R Group Side Chain		Phosphate group OH H Sugar

Cell transport?

Chemical indicator: iodine: indicates presence of starch

Photosynthesis/Cellular Respiration Test

- Energy = the ability to do work
- Forms of energy:
 - -Kinetic energy = moving objects contain kinetic
 - -Potential energy = stored energy:
 - -chemical potential energy: energy stored in molecules, specifically in bonds
 - -gravitational potential energy: potential energy due to gravity
 - -law of conservation of energy = energy cannot be created or destroyed, only transformed; ex: stove, as heat builds, the energy is released into the air

CHEMICAL ENERGY AND ATP

- ATP = used for energy in cells
- Energy is stored in bonds of ATP
- Energy is released when the third phosphate bond is broken
- Important energy sources: carbohydrates and lipids
- ATP: 3 parts: phosphate group, ribose, adenine
- Phosphate groups = where the energy is stored/third bond
- ADP = adenosine diphosphate
- Cycle: ATP, when used, -> ADP, energy from food is broken down; phosphate group added
- , -> ATP; proteins needed to carry out this process
- calorie = energy needed to raise 1 gram of water 1 degree Celsius
- Calorie = 1000 calories
- Autotroph = producers/ perform photosynthesis
- Heterotrophs = consumers/ do not carry out photosynthesis
- Chemosynthesis = uses chemicals from CO₂ and O₂ to create sugars, found in autotrophs, molecules: carbon dioxide, oxygen, glucose/sugar

PHOTOSYNTHESIS

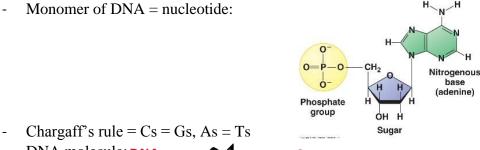
- Definition = process that captures energy from the sun to make sugars
- Equation = $6CO2 + 6H20 \rightarrow C6H12O6 + 6O2$
- Electromagnetic spectrum = all wave lengths, visible light/white = ROYGBIV
- Chlorophyll a and b = absorb red + blue wavelengths, reflect green wavelengths
- Accessory pigments = light absorbing compounds (chlorophyll a and b)
- Grana = stacks of thylakoids/ coin shaped compartments
- Thylakoid = single coin-shaped compartment
- Stroma = liquid inside chloroplast
- Importance of membrane = where light enters the cell
- Stages of photosynthesis:

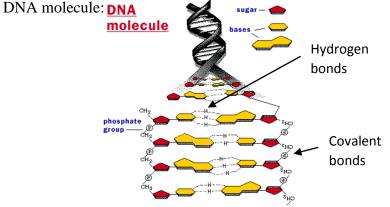
LIGHT DEPENDENT REACTIONS

- Sparked by photons from sunlight
- Happens inside thylakoid/thylakoid membrane
- Photosystem 1 and 2 = electron chain that in the end, produces ATP and NADPH
- Reactants = H20, sunlight
- Products = ATP, NADPH, O2

Light dependent reaction

-energy from light independent reaction: NADPH and 2 ATP helps bond together CO2 molecules together to form glucose


- calvins cycle
- -ADP and NAD+ are put back into light dependent stage to turn into NADPH and ATP
- overall function of photosynthesis: transform chemical energy of ATP and NADPH into glucose
- -use: base of food chain; help regulate air through cycles


LEAVES STRUCTURE

- epidermis = waxy coating that covers leaf, function is to absorb water, protect leaf, etc
- Cuticle = coating over epidermis, function is to prevent water loss
- Guard cells = cells that control stoma, function is to regulate gas in and out of cell by pumping potassium ions into guard cells, creating a hypertonic solution inside; water rushes in and a tunnel is showed
- Palisade layer = where most photosynthesis occurs\ right below epidermis and cuticle
- Spongy mesphyll layer = where gases can flow through/ middle of cell layers
- Veins = transport materials for cells; run throughout cell

Cell Division Test Review

- All scientists = end discovery: DNA contains genetic info, is helical shaped, C=G, A=T

DNA REPLICATION

- Purpose = copy DNA into identical copies
- Role of enzymes in replication = check DNA for mistakes, unzip the DNA
- Importance of hydrogen bonds = allow DNA to be easily unzipped and copied
- Source of nucleotides for replication = cytoplasm
- Replication result = one old strand, exact copy of original strand
- Replication can happen in a few hours because of enzymes that speed up the reactions

CHROMOSOMES

- Somatic cells = any cell besides sex cells (somatic contain autosomes)
- Germ cells = sex cells; reproduce through meiosis
- Autosomes = first 22 chromosomes
- Sex chromosomes = 1 pair of chromosomes (XX = girl, XY = boy)

- Homologous chromosomes = chromosomes that are exactly alike in shape/size
- Chromosome = contains chromatids/sister chromatids
- Histones = proteins that DNA wraps around in order to become tightly packed and make a chromosome
- Centromere = center of chromosome
- Chromatin = DNA in its unwound state
- Genes = controls heredity
- Genes store genetic code through a code of nitrogen bases (ACGT)
- With the code, genes tell DNA use the code
- Humans have 20,000 genes
- Telomeres = caps at the end of chromosomes; wear out over time; like aglets of a shoe lace
- Diploid = full number of chromosomes
- Haploid = half of chromosomes

CELL CYCLE

- G1 = cell does regular functions
- S = DNA is replicated
- G2 = cell prepares for cell division (makes sure everything is correct)
- Mitosis
- Cytokinesis = cell splits into 2
- Rates of cell division = depends on type of cell
- Limits of cell size = volume cannot be too great since certain functions cannot be carried out quick enough, so cell divides

MITOSIS

- Cells that undergo mitosis = somatic cells
- Result = 2 identical daughter cells
- Prophase = chromosomes formed from DNA
- Metaphase = chromosomes line up in center of cell with spindle fibers attached
- Anaphase = chromosomes split from centromere
- Telophase = chromosomes go to each side, cell pinches together
- Cytokinesis = after mitosis; where cell splits
- Regulation of cell cycle = certain internal + external conditions need to be met
- Apoptosis = planned death of a cell
- Cancer = uncontrolled cell division/growth
- Benign cancer = no cells break away from tumor
- Malignant cancer = cells break away, go into bloodstream, form new tumors
- Causes = carcinogens, too much sun, radiation, chemicals
- Treatments = radiation therapy, chemotherapy
- Asexual reproduction = produces identical offspring
- Type of asexual reproduction = binary fission
- Occurs in most prokaryotes
- Advantages of asexual repro = very predictable, everything is the same
- Disadvantages = organisms cannot adapt (unless mutations occur)
- Advantages of sexual repro = organisms can adapt/diversity of species
- Disadvantages = not everything is the same

MEIOSIS

- Reproduction of germ cells
- Product of meiosis = 4 haploid cells, genetically different from each other
- Stages: PMAT I, PMAT II

- Gametogenesis = reproduction of gametes/sex cells

MULTICELLULAR ORGANISMS

- Stages:
 - 1) Cell
 - 2) Tissue
 - 3) Organ
 - 4) Organ system
 - 5) Organism
- Cell differentiation = simple cell changing into a specialized cell

STEM CELLS

- Cells that can change into a specialized cell
- Different types of stem cells
- Importance = can repair tissue that is lost or form into a type of cell when the body needs it