lame	Date	Period
------	------	--------

The Physics of "Avatar"

CONCEPTUAL PHYSICS

Directions: Answer any <u>five</u> of the bulleted-questions below. Clearly number and answer in complete sentences to receive credit. Show all work when you are asked to use a physics equation to solve.

(EXTRA CREDIT: 3 points for each additional bulleted-question answered)

Equations:

$$F = ma F_g = mg v = \frac{d}{t} F = G \frac{m_1 m_2}{d^2} p = mv I = \frac{V}{R} P = IV$$

$$v = v_0 + gt d = \frac{1}{2}gt^2 t = \sqrt{\frac{2d}{g}} PE = mgh KE = \frac{1}{2}mv^2$$

- 1. The term "slow gravity" was used to describe the gravitational acceleration ("g") on Pandora.
 - What did they mean by this?
 - Which equation above would be used to support this claim?
 - What effects might "slow gravity" have on the human body?
 - How might "slow gravity" affect the growth of trees and plants on Pandora?
- 2. Unobtainium was the resource humans were mining on Pandora.
 - What was the importance of this material and what would it be used for?
 - How did the presence of unobtainium explain the "Hallelujah" Floating Mountains?
 - Using Ohm's Law $(I = \frac{V}{R})$, explain how unobtanium would increase the resulting current in an electrical circuit.
 - How would unobtanium affect the Power generated by an electrical device? P = IV
 - · What is the Law of Conservation of Energy and how is it relavent to superconductors?
- 3. Pandora's acceleration due to gravity is only 80% of what it is here on Earth. Assuming your mass is 100 kg: $("g" on Earth equals 9.8 m/s^2)$
 - What would your mass be on Earth and on Pandora?
 - What would your weight be on Earth and on Pandora? $F_g = mg$
 - Assuming there is no air resistance and you were falling for 10 seconds, what would your velocity be on Earth and on Pandora? $v = v_0 + gt$
 - How would an object's momentum be effected by Pandora's decreased gravitational attraction (use equation for momentum to help answer question) p = mv
- 4. In the movie, the "Na'vi" said that the energy in their bodies is only borrowed.
 - Explain this in terms of the Law of Conservation of Energy.
- 5. The trip to Pandora took 6 years to travel the 4.37 light years away from Earth. (1 light year = 1.08×10^{12} kilometers)
 - What was their average speed during the trip? (express in km/sec) $v = \frac{d}{r}$
 - If the mass of the spacecraft was 1 million kilograms, what was the spacecraft's momentum? p=mv
 - What was the spacecraft's kinetic energy? $KE = \frac{1}{2}mv^2$