Video Worksheet: "How do solar panels work?" CONCEPTUAL PHYSICS: UNIT 6
Directions : Answer the following questions while watching YouTube video "The Science of Static Electricity". https://www.youtube.com/watch?v=xKxrkht7CpY&t=38s
1. How much solar power does the Earth absorb every day?
2. Solar panels are made up of smaller units called
3. What are the most common solar cells made of?
4. What is the most abundant element on Earth?
5. Why can't electrical current flow in silicon?
6. How many different layers are there in a silicon solar cell?
7. What is special about an "n-type" silicon?
8. What is special about the "p-type" silicon layer?
9. Where the two types of silicon meet, electrons can wander across the p/n junction, leaving a
charge on one side and creating
charge on the other.
10. You can think of light as the flow of tiny particles called
11. When one of these photons strikes the silicon cell with enough energy, it can knock an

Name ______ Date _____ Period _____

_____ from its bond leaving a hole.

12. The	charged electron and location of the		
charged hole are now free to	move around. But because	of the electric field at the p/n junction	
they'll only go	way. The electron is draw	n to theside, while the hole is	
drawn to the side.			
13. The mobile	are collected	by thin metal fingers at the top of the	
cell. From there they flow th electrical work like powering sheet on the back.	rough an external a light bulb before returning	, doing through the conductive aluminum	
14. Each silicon cell puts ou	ıt a	but you can string them	
together to in modules to get	more	·	
15. How many photovoltaic of	cells do you need to power a	cell phone?	
16. What are the only moving	g parts in a solar cell?		
17. How long can solar cells	last?		
18. So what is stopping us fr	om being completely reliant of	on solar power? (name at least two)	
19. The most efficient solar of	cell yet still only converts	% of the available sunlight to	
electricity, and most commer	rcial systems are currently	% efficient.	
20. How much space would	we need to power the world v	with solar power?	
21. How many people on our	r planet do not have access t	o a reliable electrical grid?	