IMPORTANT TERMS: - Charge - Conductor - Conservation of charge - Coulomb - Coulomb's Law - Electrical force - Electrically polarized - Electrostatics - Grounding - Induced - Induction - Insulator - Semiconductor - superconductor #### **EQUATIONS:** $$F = k \frac{q_1 q_2}{d^2}$$ # UNIT V: Electricity and Magnetism Chapters 32-37 ## **Chapter 32: Electrostatics** I. Electrical Forces and Charges (32.1) A. **Electrostatics**- electricity at (Involves electric charges, forces between them, and their behavior in materials) B. Electrical forces 1. arise from in atoms 2. Occur as of **forces** acting on you at all times a. and forces b. This force attributed to property called 1). **Electrons**- ____ charge 2). Protons- ____ charge 3). **Neutrons**- ____ charge 3. Much _____ than gravitational force C. Atoms IT'S LIKE THIS... 1. Every atom has **positively** charged _____ surrounded by negatively charged electrons electron (-) 2. All electrons are identical (same and of proton (+) negative charge) 3. **Nucleus** composed of neutron (0) and _____. a. all protons are b. all neutrons c. Proton has mass 2000 times than electron d. positive charge of proton _____ in magnitude to negative charge of electron. e. <u>neutron</u> has mass slightly greater than proton and has charge 4. Atoms usually have as many electrons as protons, | so atom has anet charge | |---| | 5. Fundamental rule at the base of all electrical phenomena is: | | Like charges; opposite charges | | Likes Repel | | ← • • • • • • • • • • • • • | | Likes Repel | | II. Conservation of Charge (32.2) | | A. Electrons and protons have electric charge | | 1. Neutral atom - <u>electrons</u> <u>protons</u> (no net charge) | | If electron removed atom no longer neutral- would
have one extra proton and be positively charged | | 3 a charged atom | | a. positive ion - has net positive charge (it has lost one or more) | | b. negative ion - has net negative charge (it has gained one or more extra) | | B. Electrical charge | | 1. Matter made of | | 2. imbalance in numbers cause object to be | | C. Electrons | | Inner electrons bound to oppositely charged nucleus | | 2. Outermost electrons bound and can be easily | | 3. Different materials require varying amounts ofto tear an electron away from an atom | | An object with unequal numbers of electrons and
protons is electrically charged (either negatively or
positively) | D. Conservation of charge | 1 | are neither created nor destroyed | | | | |--|--|--|-------------------------|----------------------------| | | a. They are
one materi | e simply
al to another | | from | | | | s conserved (creation of ener | | | | III. Coulomb's Lav | N (32.3) | | | | | A. Explains | s the electrica | I force between | any two obj | jects | | 1. S | imilar to | La | w of Gravita | ation | | 2. C | beys | square relat | t ionship wit | th distance | | | iscovered by
36-1806) | French physicis | t Charles C | oulomb | | objects the them, the forceduct of | at are small co
f orce betweer | tes that for char
compared to the
in the charges va
is and inversely | distances baries direct | etween
ly as the | | | | | | | | q ₁ = quant
q ₂ = quant | tity of charge | charged particle
of one particle
of other partic
estant | e | | | 1. S | I unit of charg | e is the | | (C) | | | | ulomb = charge
6.24 X 10 ¹⁸ elec | | on billion | | | | of charge that p
W light bulb in | | ıgh | | | _ | y constant (k) i
wton's law of gr | | s law is | | | a. Unlike (0 | G) in gravitation number | | k) is a very | electrical forces is that tracts, electrical | nat while gravity only | | |--|---|--| | | out | | | | | | | inant force betweer | force (attractive only) is
n astronomical bodies | } | | • | • | | | nsulators (32.4) | | | | | | und | | ls arecor | nductors of | | | good conductors o | of | | | Materials whose | are not free to wand | der | | conduct | tors of heat | | | oer and glass good | l | | | or or insulator (thin | layers of semi-conducting | 9 | | (At temper | rature near | , | | • | , | | | · | , | h a 12 | | | | ien | | ARE PRES | ENT IN EQUAL | | | | electrical forces is the attracts, electrical for | force (attractive only) is inant force between astronomical bodies nic level- explains the bonding of | | B. Charging by Contact- can transfer by touching charged object to object | |--| | VI. Charging by Induction (32.6) | | A. Electrons are caused to or by the presence of a nearby charge (even w/o physical contact) | | A B B C d d | | 1. Charging by induction occurs during thunderstorms | | Demonstrated by Benjamin Franklins kite experiment | | Most lightning is an electrical discharge between oppositely charged parts of a | | B. An object can be charged when touched when the charges are by induction. | | NET CHARGE IS ZERO NET CHARGE IS + NET CHARGE IS - CCLICK OF CLICK CL | | C when we allow charges to move off (or onto) a conductor by touching it, it is common to say we are grounding it. | | allow path to practically reservoir for electric charge (the ground) | | 2. Important when we talk about electrical currents | | Lightning rod- designed by Franklin to prevent large
buildup of charge that would otherwise lead to a sudden
between cloud and building. | | VII. Charge Polarization (32.7) | | A. When charged rod brought near an insulator, there are no electrons to migrate throughout the insulating material. | | Instead there is a | of the positions of | |---|---------------------| | charges within the atoms and molecules. | | - 1. One side is _____ to be slightly more **positive** or **negative** than the opposite side - 2. The atom or molecule is said to be electrically 3. Many molecules are electrically polarized (______) ### **Negatively Charged End** Positively Charged End