IMPORTANT TERMS:

- Capacitor
- Electric field
- Electric potential
- Electrical potential energy
- Volt
- voltage

EQUATIONS:

$$F = k \frac{q_1 q_2}{d^2}$$

Electric potential=

Electrical potential
Charge

Joule

1 Volt = Coulomb

UNIT V: Electricity and Magnetism Chapters 32-37

Chapter 33: Electric Fields and Potential

I. Electric	Fields (33.1)				
A. Gravitational Field - the force field that surrounds a					
	Idea that things not in could exer forces bothered Isaac Newton and many others				
	2. Concept of force field <u>eliminates</u> the factor				
B.	Space around every mass is filled with field				
C. Space around every electric charge filled with an field					
	1. Electric field has both and (vector)				
	2. Magnitude (strength) measured by its effect on located in the field				
	3. Direction of electric field at any point, by convention, is the direction of the electrical force on a small test charge placed as that point.				
II. Electric Field Line (33.2)					
A quantity- Electric field has both magnitude and direction					
	Negatively charged particle is surrounded by vectors that point the particle				
	2. Positive charged particle- vectors point				
B. Electric Field Lines- used to describe an electric field					

1. Field lines (lines of force) _____ apart

when field is _____

2. For isolated charge- lines <u>extend to</u>				
3. For two or more charges- lines <u>emanate from</u> charge and <u>terminate on</u> charge				
4. Electric field is storehouse of				
III. Electric Shielding (33.3)				
A. Electric charges themselves on the surface of all conductors is such a way that the electric field inside the conductors is				
B. Electrical components often encased in metal boxes to them from all outside electrical activity				
IV. Electric Potential Energy (33.4)				
A. Relationship between and				
1. Work is done when a moves something in the of the force.				
2. Object has potential energy by virtue of its				
F				
B. Charged object can have potential energy by virtue of its <u>location in an electric field</u> .				
DE DE DE				

		1. Work is <u>equal</u> to the gain	ed by the charge
		Energy change has called electrical energy	
		3. If charge released , willaccording to charge (+ or -) and turn int energy	in direction to
V. Ele	ctric P	Potential (33.5)	
		ectric Potential Energy per Charge- tot ntial energy divided by the amount of cha	
		1. We call this Electric Potential	
		2. SI unit of electric potential is a vol	t (V)
		Since potential energy measured in j measured in coulombs,	oules and charge
		nce electric potential measured in volts, c	ommonly
	asso	an have large voltage with small amount on ciated with the charged object (rub balloo tively charged, perhaps to several thousa	n and becomes
		1. Only small amount of	involved
		2. Amount of also very	small
VI. Ele	ectrica	al Energy Storage (33.6)	
	A	device capable of storing	electrical energy
		1. Found in nearly all	circuits
		2. Made by pair of separated by a small distance (but not	plates touching)
		3. Energy stored in a capacitor comes to required to it.	rom the
		4. Energy is in the form of thebetween its	field

B. Charged capacitor is	when conducting
path is provided between the plates	J

VII. The Van de Graaff Generator (33.7)

- A. Common laboratory device that can develop high voltages
 - 1. Motor driven belt moves past _____ set of metal needles that are maintained at a high electric potential
 - 2. electrons deposited on the _____ and carried up into the hollow metal sphere
 - 3. _____ leak onto metal points attached to the inner surface of the sphere
 - 4. Electrons move to outer surface of the conducting sphere
 - 5. Charge builds up to a very high electric _____ (____ of volts)

