Chapter 36 & 37: Magnetism and Electromaagnetic Induction

What you will learn:

- You will relate magnetism to electric charge and electricity
- You will describe how electromagnetism is harnessed to produce mechanical work

Why it's important:

- Using electromagnetism in electric motors, you can convert electrical energy to mechanical energy
- Every day, you apply mechanical energy produced from electrical energy

State Standards Addressed

Electric and Magnetic Phenomena: Electric and magnetic phenomena are related and have many practical applications. As a basis for understanding this concept:

- Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources.
- Students know how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil.
- Students know changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors.

I. Historical Background

- **A.** The term *magnetism* comes from region of Magnesia, a province in Greece, where certain stones (*lodestones*) had the unusual property of attracting pieces of iron
- **B.** The **Chinese** were first to fashion magnets into **compasses** in the 12th century
- C. European explores brought back knowledge in 1500's
- **D.** In 16th century, **William Gilbert** (Queen Elizabeth's physician) mad **artificial magnets** by rubbing pieces of iron against lodestone and suggested that a compass always points north and south because the **Earth has magnetic properties**.
- **E.** In 1750, **John Michell** in England found that magnetic poles obey the **inverse square law**, and his results were confirmed by **Charles Coulomb**.
- **F.** Hans Christian **Oersted** discovered that an electric current affects a magnetic compass. He saw that **magnetism was**

related to electricity

G. Shortly thereafter, the French physicist Andre-Marie **Ampere** proposed that **electric currents** are the source of all **magnetic phenomena**.

II. Magnetic Properties

A. Magnetic Poles

- 1. A magnet is polarized (it has two ends)
 - a. North-seeking pole-points northward
 - **b. South-**seeking **pole-** points **southward**
 - c. Poles are located at the end of the magnets
- **2. Like poles repel** and **unlike attract** (just like forces between electric charges)

B. Magnetic Forces

- 1. Are similar to electric forces
 - a. Can both attract and repel
 - **b. Strength** of **magnetic interaction** depends on the **distance** between the two magnets
- 2. Whereas electric charges produce electric forces, regions called **magnetic poles** give rise to magnetic forces

C. Permanent magnets

- **1.** Caused by **motion of electrons** within the material (both **electron spin** and **revolution**)
 - **a.** Electrons spinning in **same** direction make up a **tiny magnet**.
 - b. A pair of electrons spinning in opposite directions work against each other and magnetic fields cancel
- 2. In materials such as iron, each atom has four electrons whose spin magnetism is uncanceled.
 - a. Each iron atom is tiny magnet
 - **b.** The magnetic fields from groups of atoms can add together. These are called **domains** (10²⁰ atoms)
 - **c.** When piece of iron is not in a magnetic field, the domains do not all point in same direction

(magnetic fields cancel)

- **d.** When iron placed in **magnetic field**, **domains** tend to **align** with the **external field** producing a **temporary magnet**. After removing from field domains return to random arrangement.
- e. In permanent magnets, the iron has been alloyed with other substances (aluminum, cobalt, nickel) that keep domains aligned after external magnetic field is removed

D. Magnetic Fields

- **1. Magnetic forces** can be described by existence of *magnetic fields* around the magnets
 - a. These lines are imaginary
 - **b.** Help **visualize** the field and provide **measure of strength.**
 - 1). magnetic flux- the number of field lines in any given region
 - 2). The flux per unit area is proportional to the strength of the magnetic field
- 2. Field lines come out N-pole of magnet and enter magnet at its S-pole.

- **3.** Field lines **continue through** the **inside** of the magnet.
- 4. Field lines always form closed loops
- 5. Magnetic fields exert forces on other magnets
 - a. N-pole of one magnet pushes N-pole of another magnet.

b. N-pole of one magnet attracts S-pole of another magnet.

III. Electromagnetism

- A. In 1820, Hans Christian Oersted discovered that electric currents produce magnetic fields
- B. Magnetic field near a current-carrying wire
 - 1. Force is perpendicular to direction of current in wire
 - **2.** Magnetic field lines form **concentric circles** around the wire (closed loops)
 - **a. Strength** of magnetic field is **proportional** to the **current**
 - **b. Strength** of field varies **inversely** with the **distance** from the wire
 - **3. First right-hand rule-** allows you to find the direction of the field around a wire
 - a. Thumb points in direction of conventional current (+ flow)
 - **b. Fingers** of hand **circle** the wire and point in **direction of magnetic field**

C. Magnetic field near a coil

- **1.** An electric current in a single circular loop of wire forms a magnetic field all around the loop
- 2. When wire looped several times to form a coil and current is allowed to flow- field around all the loops is always in same direction
 - a. Solenoid-long coil of wire with many loops
 - **b.** Field of each loop adds to fields of other loops
- **3.** Electric current in a coil of wire has a **field** like that of a **permanent magnet** (has N and S poles)
 - a. called an electromagnet
 - **b. Strength** of **field** is **proportional** to **current** in coil
 - **c.** Can increase strength by placing an iron rod inside the coil. The field inside the coil magnetizes the core. These add together
- 4. **Direction** of **field** produced by electromagnet can be found using the **second right-hand rule**

- **a.** Imagine holding insulated coil with you right hand
- **b. Curl fingers around loops** in the **direction** of the **conventional current** (+ flow)
- **c. Thumb points toward the N-pole** of the electromagnet

IV. Forces Caused by Magnetic Fields

- A. Forces on currents in magnetic fields
 - 1. Michael Faraday (mid 1800's) discovered that the force on a wire is at right angles to the direction of the magnetic field.
 - 2. Force is also at right angles to the direction of the current
- B. Use third right-hand rule to determine direction of force
 - **1.** Point **fingers** of right hand in **direction** of **magnetic field**.
 - 2. Point thumb in direction of conventional (+) current
 - **3. Palm of hand** points in **direction** of **force** acting on the wire

- C. Magnitude of force (F) on wire is proportional to 3 factors
 - 1. The strength of field (B)
 - 2. The current (I) in the wire
 - 3. The length (L) of the wire that lies in the magnetic field

Equation:
$$F = BIL$$

Measured in **teslas** (T) 1 T = 1 N/A·m

V. Applications of Magnetic Force

A. Loudspeakers

- 1. Changes electrical energy into sound energy
- **2.** Uses a coil of fine wire mounted on a paper cone and placed in a magnetic field
- **3.** Amplifier driving loudspeaker sends **current** through the **coil**
- **4.** The current changes direction between 20 and 20,000 times each second, depending on the pitch of the tone it represents.
- **5.** A **force**, exerted on the coil because it is in a magnetic field, **pushes** the coil either **into or out of the field**, depending on the **direction of the current**
- 6. The motion of the coil causes the cone to vibrate, creating sound waves in the air

B. Galvanometer

- 1. Device used to measure very small currents
- 2. Used in voltmeters and ammeters.
- **3.** A small loop of current carrying wire is placed in a strong magnetic field
- **4.** One side of loop forced down and the other side is forced up (third right-hand rule)
- **5.** Magnitude of **torque** acting on the loop is proportional to the magnitude of the **current**
- **6.** A small spring in the galvanometer exerts a torque that opposes the torque resulting from the current; thus, the **amount of rotation is proportional to the current**

C. Electric Motor

- 1. Apparatus to convert electrical energy to kinetic energy
- **2.** Must rotate **360°**, therefore the **current** must **reverse** direction just as the loop reaches its vertical positionallowing it to continue rotating.
 - **a.** To reverse direction, a **split-ring commutator** is used.
 - **b. Brushes** (pieces of graphite) make **contact** with the **commutator**, allowing current to flow into the loop
 - **c.** The split ring is arranged so that each half of the commutator changes brushes just as loop reaches vertical position.
 - **d.** Changing brushes **reverses** current in the loop- resulting in changing of forces acting on the loop- allowing loop to continue to rotate
 - **e. armature-** many loops of wire mounted on a shaft in electric motor. Total force proportional to **nBIL**

(**n** = total turns on armature, **B** is strength of magnetic field, **I** is the current, and **L** is length of wire in each turn that moves through the magnetic field)

D. The Force on a Single Charged Particle

- 1. Charged particles do not have to be confined to a wire, but can move in any region as long as the air has been removed to prevent collisions with air molecules
- 2. The picture tube (or cathode ray tube) in a TV uses

electrons deflected by magnetic fields to form the pictures to be viewed.

- **a.** In the tube, electrons are pulled off of atoms by electric fields at the negative electrode, or cathode.
- **b.** Other electric fields gather, accelerate, and focus the electrons into a narrow beam.
- **c.** Magnetic fields are used to deflect the beam back and forth and up and down across the screen of the tube.
- **d.** The screen is coated with a phosphor and glows when struck by the electrons, producing the picture

