Name	Date	Period
------	------	--------

Lab: Punnett Squares

BIOLOGY: UNIT 8(Genetics)

BACKGROUND: The Punnett square is a diagram that is used to predict an outcome of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach. The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles. These tables can be used to examine the genotypic outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett Square is a visual representation of Mendelian inheritance. It is important to understand the terms "heterozygous", "homozygous", "dominant allele" and "recessive allele" when

using the Punnet square method. (https://en.wikipedia.org/wiki/Punnett_square)

PROCEEDURE:

- 1. Open the Virtual Lab: Punnett Squares http://www.mhhe.com/biosci/genbio/virtual_labs_2K8/labs/BL_05/index.html
- 2. The virtual lab simulation will be on the right side of the screen, and the "Question" column will be on the left side of the screen.
- Click on the TV/VCR and watch the video.
- 3. Read the background information in the Question Column under "How can Punnett Squares help predict the traits of offspring?"
- 4. Read the background information provided in the virtual lab by clicking on the "**Information**" bar in the lab simulation area.
- 5. Answer **questions 1-5** in **Part 1** below.
- 6. Follow the instructions in the "Question" column to complete the Punnett Square simulations. Record your results in Table 1 on page two of this lab.
- 7. When you have completed the lab answer Journal Questions 1-4

Part I: Answer the following questions:

- 1. Which of the following is most inclusive?
 - a. allele
 - b. genotype
- 2. Dominant alleles are represented by:
 - a. an upper case letter
 - b. a lower case letter
 - c. it does not matter what type of letter is used

- 3. In fruit flies, gray body color is dominant over black body color. Using the letter G to represent body color, what is the genotype of a heterozygous gray bodied fly?
 - a. GG
 - b. gg
 - c. Gg
 - d. GGgg
- 4. All of the offspring of two gray bodied flys are also gray. What can you conclude about the genotypes of the parent flies?
 - a. They are both heterozygous
 - b. They are both homozygous dominant
 - c. They are both homozygous recessive
 - d. You cannot conclude anything definitively about the parental genotypes
- 5. Some of the offspring of two gray bodied flies are black. What can you conclude about the genotypes of the parent flies?
 - a. They are both heterozygous
 - b. They are both homozygous dominant
 - c. They are both homozygous recessive
 - d. You cannot conclude anything definitively about the parental genotypes

Part II: Follow the instructions in the Question column to complete the virtual lab scenarios and record your data:

Complete all ten scenarios and record your results in Table 1.

When you record a ratio, whether it is genotypic or phenotypic ratio, always record the most dominant characteristic first, followed by the recessive.

- For example, when recording genotypic ratios:
 If your offspring genotypes include 1 GG, 2 Gg, and 1 gg, the ratio would be:
 1 GG: 2 Gg: 1 gg
- If your offspring genotypes include 2 GG and 2 Gg, the ratio would be:
 2 GG: 2 gg (or 1:1 in the reduced form)
- o If your offspring genotypes are 4 gg, then the ratio would be written as: 4 gg
- When you record phenotypic ratios for a monohybrid cross, there are only two possible phenotypes - either the dominant phenotype or the recessive phenotype. So you do not need to indicate the phenotype, simply put the dominant # first, followed by the recessive #:
 - o If your offspring phenotypes are 3 dominant and 1 recessive, the ratio is: 3:1
 - o If your offspring phenotypes are 4 dominant and 0 recessive, the ratio is: 4:0
 - o If your offspring phenotypes are 0 dominant and 4 recessive, the ratio is: 0:4

Table 1

Scenario #	Genotype of Parent I	Genotype of Parent II	Genotypic Ratio of Offspring	Phenotypic Ratio of Offspring
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Journal Questions:

1. For one of the monohybrid crosses you performed in this Investigation, describe how to use the phenotype ratios to determine the percentage of offspring displaying each trait.

 $From: http://www.mhhe.com/biosci/genbio/virtual_labs_2K8/labs/BL_05/index.html$

2. Can the genotype for a gray-bodied fly be determined? of the possible genotypes for a fly with that phenotype.	Why or why not? Describe al
3. Explain why an organism with a homozygous dominant of the phenotype as an organism with a heterozygous genotype.	genotype has the same
4. What genetic information can be obtained from a Punner information cannot be determined from a Punnett square?	tt square? What genetic